elasticsearch function_score Query——文档排序结果的最后一道墙
function_score Query
The function_score query is the ultimate tool for taking control of the scoring process. It allows you to apply a function to each document that matches the main query in order to alter or completely replace the original query _score.
In fact, you can apply different functions to subsets of the main result set by using filters, which gives you the best of both worlds: efficient scoring with cacheable filters.
It supports several predefined functions out of the box:
weight- Apply a simple boost to each document without the boost being normalized: a
weightof2results in2 * _score. field_value_factor- Use the value of a field in the document to alter the
_score, such as factoring in apopularitycount or number ofvotes. random_score- Use consistently random scoring to sort results differently for every user, while maintaining the same sort order for a single user.
- Decay functions—
linear,exp,gauss - Incorporate sliding-scale values like
publish_date,geo_location, orpriceinto the_scoreto prefer recently published documents, documents near a latitude/longitude (lat/lon) point, or documents near a specified price point. script_score- Use a custom script to take complete control of the scoring logic. If your needs extend beyond those of the functions in this list, write a custom script to implement the logic that you need.
Without the function_score query, we would not be able to combine the score from a full-text query with a factor like recency. We would have to sort either by _score or by date; the effect of one would obliterate the effect of the other. This query allows you to blend the two together: to still sort by full-text relevance, but giving extra weight to recently published documents, or popular documents, or products that are near the user’s price point. As you can imagine, a query that supports all of this can look fairly complex. We’ll start with a simple use case and work our way up the complexity ladder.
转自:https://www.elastic.co/guide/en/elasticsearch/guide/current/function-score-query.html
elasticsearch function_score Query——文档排序结果的最后一道墙的更多相关文章
- Elasticsearch 7.x文档基本操作(CRUD)
官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html 1.添加文档 1.1.指定文档ID PUT ...
- elasticsearch 官方监控文档 老版但很有用
https://zhaoyanblog.com/page/1?s=elasticsearch 监控每个节点(jvm部分) 操作系统和进程部分 操作系统和进程部分的含义是很清楚的,这里不会描述的很详细. ...
- 【Elasticsearch学习】文档搜索全过程
在ES执行分布式搜索时,分布式搜索操作需要分散到所有相关分片,若一个索引有3个主分片,每个主分片有一个副本分片,那么搜索请求会在这6个分片中随机选择3个分片,这3个分片有可能是主分片也可能是副本分片, ...
- 5.ElasticSearch系列之文档的基本操作
1. 文档写入 # create document. 自动生成 _id POST users/_doc { "user" : "shenjian", " ...
- Elasticsearch没看文档之前,整理的一些知识
1 基础 index -> 数据库 type -> 表 document -> 行 field -> 列 ----------------------------------- ...
- Elasticsearch操作Document文档
1.利用客户端操作Document文档数据 1.1 创建一个文档(创建数据的过程,向表中去添加数据) 请求方式:Post 请求地址:es所在IP:9200/索 ...
- 关于Elasticsearch单个索引文档最大数量问题
因为ElasticSearch是一个基于Lucene的搜索服务器.Lucene的索引有个难以克服的限制,导致Elasticsearch的单个分片存在最大文档数量限制,一个索引分片的最大文档数量是20亿 ...
- elasticsearch 查询所有文档
0.添加一个索引 curl -i -XPUT http://172.31.250.16:10004/test_index/user/1 -d '{ "name": "小明 ...
- elasticsearch 基础 —— 分布式文档存储原理
路由一个文档到一个分片中 当索引一个文档的时候,文档会被存储到一个主分片中. Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?当我们创建文档时,它如何决定这个文档应当被存储在分片 ...
随机推荐
- linux 用户管理命令学习
groupadd www-data 添加组 useradd phpcomposer -g www-data 添加用户并加入组中 passwd phpcomposer 添加密码 usermod -g p ...
- springboot配置filter
Filter 过滤器是web开发中很重要的一个组件,下面以一个session登陆的例子介绍下spring boot中如何使用Filter 首先要准备一个实现了Filter的接口的类 SessionFi ...
- Fresco的使用<一>
版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 引入Fresco dependencies { // 添加依赖 compile 'com.facebook.fresco:fre ...
- vue doubleclick 鼠标双击事件
Vue-dblclick事件(此外事件还有mouseover,mouseout,click,mousdown...): v-on:dblclick="函数" v-on:click/ ...
- linux 中两个文档怎么对比内容是否一致
可以用diff命令对比文档内容.[语法]: diff [参数] 文件1 文件2[说明]: 本命令比较两个文本文件,将不同的行列出来-b 将一串空格或TAB 转换成一个空格或TAB-e 生成一个编辑角本 ...
- 第七讲_图像描述(图说)Image Captioning
第七讲_图像描述(图说)Image Captioning 本章结构 递归神经网络 时序后向传播(BPTT) 朴素Vanilla-RNN 基本模型 用sigmoid存在严重的梯度消失 LSTM长短时记忆 ...
- python 工具 二进制文件处理之——去掉指定长度数据包头
包头48bit 数据98464 ...如此循环: piece_size = 48 piece_size1 = 98464 with open("C:\\Users\\Administrato ...
- VC++的窗口句柄和窗口ID
原文地址:VC++的窗口句柄和窗口ID作者:放放 句柄是窗口资源的标识,它标识资源在系统中所占用的内存块,应用程序通过窗口句柄对窗口进行操作.除了窗口句柄之外,任何一种资源都有它自己的句柄,比如光标句 ...
- PJSIP 调用的GUID库
PJSIP库产生随机序列串用到GUID库,针对不同的平台使用的方式不同:Windows平台下使用的是Windows系统API CoCreateGuid,在方法 pj_generate_unique_s ...
- JavaScript 工厂模式和订阅模式
设计模式的好处: 代码规范 // 例如表单验证,两个 input ,一个用户名,一个密码 // 通常做法是 function checkUser(){ //..... } function check ...