[SHOI 2017] 组合数问题
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=4870
[算法]
回顾组合数的定义 :
C(N , M)表示将N个小球放入M个盒子里的方案数
我们发现题目要求的其实就是将nk个小球放入模k意义下于r个盒子中的方案数
不妨设Fi , j表示放了i个小球 , j个盒子(模k意义下)的方案数
有 : Fi , j = Fi - 1 , j - 1 + Fi - 1 , j
矩阵乘法即可
时间复杂度 : O(K ^ 3logNlogK)
[代码]
#include<bits/stdc++.h>
using namespace std;
const int N = 1e9 + ;
const int K = ;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld; int n , p , k , r;
int mat[K][K]; template <typename T> inline void chkmax(T &x , T y) { x = max(x , y); }
template <typename T> inline void chkmin(T &x , T y) { x = min(x , y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline void multipy(int a[K][K] , int b[K][K])
{
static int res[K][K];
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
res[i][j] = ;
}
}
for (int x = ; x < k; ++x)
{
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
res[i][j] = (res[i][j] + 1ll * a[i][x] * b[x][j] % p) % p;
}
}
}
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
a[i][j] = res[i][j];
}
}
}
inline void exp_mod(int mat[K][K] , ll n)
{
static int b[K][K];
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
b[i][j] = (i == j);
}
}
while (n > )
{
if (n & ) multipy(b , mat);
multipy(mat , mat);
n >>= ;
}
for (int i = ; i < k; i++)
{
for (int j = ; j < k; j++)
{
mat[i][j] = b[i][j];
}
}
} int main()
{ read(n); read(p); read(k); read(r);
for (int i = ; i < k; ++i)
{
++mat[i][i];
++mat[i][((i - ) % k + k) % k];
}
exp_mod(mat , (ll)n * k);
printf("%d\n" , mat[r][]); return ;
}
[SHOI 2017] 组合数问题的更多相关文章
- P3746 [六省联考2017]组合数问题
P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{ ...
- bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题
http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...
- [BZOJ4870][六省联考2017]组合数问题(组合数动规)
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 748 Solved: 398[Submit][Statu ...
- 洛谷P3746 [六省联考2017]组合数问题
题目描述 组合数 C_n^mCnm 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...
- P3746 【[六省联考2017]组合数问题】
题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...
- 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学
正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...
- BZOJ4870 [六省联考2017] 组合数问题 【快速幂】
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...
- SHOI 2017 相逢是问候(扩展欧拉定理+线段树)
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...
- [六省联考2017]组合数问题 (矩阵优化$dp$)
题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...
随机推荐
- jquery_ajax 入门实例
序:本文通过几个小样例,简单介绍怎样使用jqueryAjax异步载入. 1. $(selector).load(url,[data],[callback]) :加载远程HTML文件代码并插入DOM中. ...
- iOS 推送 获取手机设备的 deviceToken
第一步:申请证书: 第二步:申请app ids,应用名字必须一致.然后再进入进行编辑.使其enable,绿灯. 第三步:申请provisioning profile,生成.mobileprovisio ...
- 如何用迅雷下载在网页中的Flash动画或课件
对于框架网页而言,看地址栏可以发现后缀不是SWF,就是说该网站没有直接把Flash给你,右击该Flash也没有下载选项. 此时虽然右下角是Flash,但是左边和上面网页部分还是正常的元素,右击这些 ...
- sonar + ieda实现提交代码前代码校验
代码风格不同一直是一件停头疼的事情,因为不同的工作经验,工作经历,每个人的代码风格不尽相同,造成一些代码在后期的维护当中难以维护, 查阅一些资料之后发现 idea + sonar 的方式比较适合我,实 ...
- 浅谈MySQL外键
http://www.xiaoxiaozi.com/2009/07/12/1158/ 像MySQL这样的关系型数据库管理系统,它们的基础是在数据库的表之间创建关系的能力.通过方便地在不同表中建立记录到 ...
- 【每日Scrum】第二天(4.23) TD学生助手Sprint2站立会议
站立会议 组员 昨天 今天 困难 签到 刘铸辉 (组长) 昨天觉得整个界面不适合后期功能扩展,所以进行了整体整改 今天主要看了多事件处理的内容然后改了下界面, 遇到的困难就是正在寻找用户交互性比较好的 ...
- Ionic + AngularJS angular-translate 国际化本地化解决方案
欢迎访问我们的网站,网站上有更多关于技术性的交流:http://www.ncloud.hk/技术分享/ionic-plus-angularjs-angular-translate-国际化本地化解决方案 ...
- linux下修改主机名hostname方法(转载)
查看主机名: 在终端输入hostname 永久修改 第一步:#hostname oratest 第二步:修改/etc/sysconfig/network中的hostname 第三步:修改/etc/ho ...
- iphone开发的技巧
一,改动状态栏: 1.增加[[UIApplication sharedApplication] setStatusBarHidden:YES animated:NO];但此方法仅仅是不显示状态条,状态 ...
- EasyPusher安卓Android手机直播推送之MediaCodec 硬编码H264格式
本文转自Holo的博客:http://blog.csdn.net/u013758734/article/details/50834770 最近在研究EasyDarwin的Push库EasyPusher ...