[SHOI 2017] 组合数问题
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=4870
[算法]
回顾组合数的定义 :
C(N , M)表示将N个小球放入M个盒子里的方案数
我们发现题目要求的其实就是将nk个小球放入模k意义下于r个盒子中的方案数
不妨设Fi , j表示放了i个小球 , j个盒子(模k意义下)的方案数
有 : Fi , j = Fi - 1 , j - 1 + Fi - 1 , j
矩阵乘法即可
时间复杂度 : O(K ^ 3logNlogK)
[代码]
#include<bits/stdc++.h>
using namespace std;
const int N = 1e9 + ;
const int K = ;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld; int n , p , k , r;
int mat[K][K]; template <typename T> inline void chkmax(T &x , T y) { x = max(x , y); }
template <typename T> inline void chkmin(T &x , T y) { x = min(x , y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline void multipy(int a[K][K] , int b[K][K])
{
static int res[K][K];
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
res[i][j] = ;
}
}
for (int x = ; x < k; ++x)
{
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
res[i][j] = (res[i][j] + 1ll * a[i][x] * b[x][j] % p) % p;
}
}
}
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
a[i][j] = res[i][j];
}
}
}
inline void exp_mod(int mat[K][K] , ll n)
{
static int b[K][K];
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
b[i][j] = (i == j);
}
}
while (n > )
{
if (n & ) multipy(b , mat);
multipy(mat , mat);
n >>= ;
}
for (int i = ; i < k; i++)
{
for (int j = ; j < k; j++)
{
mat[i][j] = b[i][j];
}
}
} int main()
{ read(n); read(p); read(k); read(r);
for (int i = ; i < k; ++i)
{
++mat[i][i];
++mat[i][((i - ) % k + k) % k];
}
exp_mod(mat , (ll)n * k);
printf("%d\n" , mat[r][]); return ;
}
[SHOI 2017] 组合数问题的更多相关文章
- P3746 [六省联考2017]组合数问题
P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{ ...
- bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题
http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...
- [BZOJ4870][六省联考2017]组合数问题(组合数动规)
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 748 Solved: 398[Submit][Statu ...
- 洛谷P3746 [六省联考2017]组合数问题
题目描述 组合数 C_n^mCnm 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...
- P3746 【[六省联考2017]组合数问题】
题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...
- 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学
正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...
- BZOJ4870 [六省联考2017] 组合数问题 【快速幂】
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...
- SHOI 2017 相逢是问候(扩展欧拉定理+线段树)
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...
- [六省联考2017]组合数问题 (矩阵优化$dp$)
题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...
随机推荐
- Spring源代码由浅入深系列三 refresh
Spring中的refresh是一个相当重要的方法. 它完毕IOC的第一个阶段,将xml中的bean转化为beanDefinition.具体说明如上图所看到的. 在上图中,创建obtainFreshB ...
- 基于ACCESS和ASP的SQL多个表查询与计算统计代码(一)
近期在写几个关于"Project - Subitem - Task"的管理系统,说是系统还是有点夸大了,基本就是一个多表查询调用和insert.update的数据库操作.仅仅是出现 ...
- PHP 实现Word,excel等转换pdf
近期做一个项目,须要将用户上传的word,excel文档转成PDF文档保存并打印.在网上找了非常多资料.并不全面,所以自己写了一份比較全面的教程来分享. 以下是操作步骤: 1. 安装免费 ...
- yum安装zabbix监控
公司的服务器由于没有监控软件监控,最感觉不安全,就开始研究zabbix的安装,最后找到一个最简单的安装方法,在这里记录一下,方便以后的查阅 1.安装zabbix官方的软件配置仓库 rpm -ivh h ...
- Linux基础(4)-硬盘分区、格式化及文件系统的管理、软件包的管理、yum管理RPM包和python的源码安装
一: 1) 开启Linux系统前添加一块大小为15G的SCSI硬盘 2) 开启系统,右击桌面,打开终端 3) 为新加的硬盘分区,一个主分区大小为5G,剩余空间给扩展分区,在扩展分区上划分1个逻辑 ...
- SpringBoot学习之@Controller和@RestController
今天我们来研究一下@Controller和@RestController的用法 @Controller 1.Controller可以用来跳转页面,并且必须配合模板来使用. @Controller // ...
- LNMPA遇到504 Gateway time-out错误的解决方法
Nginx的特点是处理静态很给力,Apache的特点是处理动态很稳定,两者结合起来便是LNMPA,nginx处理前端,apache处理后端,这样处理静态会很快,处理动态会很稳定. 当我以为安装完成以后 ...
- Node.js知识点学习
Node.js知识点学习 一.基本概念 Node.js,或者 Node,是一个可以让 JavaScript 运行在服务器端的平台.可以说,Node.js开创了javascript模块化开发的先河,早期 ...
- TFS 解除独占锁定
cmd 进入Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE tf workspace /delete 工作区名;创建的用户 / ...
- 集群服务器状态命令------rs.status()各个字段的含义
可根据rs.status() 查询集群服务器状态.字段解释: self 这个信息出现在执行rs.status()函数的成员信息中 stateStr用户描述服务器状态的字符串.有SECONDARY,PR ...