[SHOI 2017] 组合数问题
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=4870
[算法]
回顾组合数的定义 :
C(N , M)表示将N个小球放入M个盒子里的方案数
我们发现题目要求的其实就是将nk个小球放入模k意义下于r个盒子中的方案数
不妨设Fi , j表示放了i个小球 , j个盒子(模k意义下)的方案数
有 : Fi , j = Fi - 1 , j - 1 + Fi - 1 , j
矩阵乘法即可
时间复杂度 : O(K ^ 3logNlogK)
[代码]
#include<bits/stdc++.h>
using namespace std;
const int N = 1e9 + ;
const int K = ;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld; int n , p , k , r;
int mat[K][K]; template <typename T> inline void chkmax(T &x , T y) { x = max(x , y); }
template <typename T> inline void chkmin(T &x , T y) { x = min(x , y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline void multipy(int a[K][K] , int b[K][K])
{
static int res[K][K];
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
res[i][j] = ;
}
}
for (int x = ; x < k; ++x)
{
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
res[i][j] = (res[i][j] + 1ll * a[i][x] * b[x][j] % p) % p;
}
}
}
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
a[i][j] = res[i][j];
}
}
}
inline void exp_mod(int mat[K][K] , ll n)
{
static int b[K][K];
for (int i = ; i < k; ++i)
{
for (int j = ; j < k; ++j)
{
b[i][j] = (i == j);
}
}
while (n > )
{
if (n & ) multipy(b , mat);
multipy(mat , mat);
n >>= ;
}
for (int i = ; i < k; i++)
{
for (int j = ; j < k; j++)
{
mat[i][j] = b[i][j];
}
}
} int main()
{ read(n); read(p); read(k); read(r);
for (int i = ; i < k; ++i)
{
++mat[i][i];
++mat[i][((i - ) % k + k) % k];
}
exp_mod(mat , (ll)n * k);
printf("%d\n" , mat[r][]); return ;
}
[SHOI 2017] 组合数问题的更多相关文章
- P3746 [六省联考2017]组合数问题
P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{ ...
- bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题
http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...
- [BZOJ4870][六省联考2017]组合数问题(组合数动规)
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 748 Solved: 398[Submit][Statu ...
- 洛谷P3746 [六省联考2017]组合数问题
题目描述 组合数 C_n^mCnm 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...
- P3746 【[六省联考2017]组合数问题】
题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...
- 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学
正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...
- BZOJ4870 [六省联考2017] 组合数问题 【快速幂】
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...
- SHOI 2017 相逢是问候(扩展欧拉定理+线段树)
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...
- [六省联考2017]组合数问题 (矩阵优化$dp$)
题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...
随机推荐
- Android开源工具项目集合
最近因为要去外派了,工欲善其事,必先利其器!所以又回顾了一下自己github上所收藏的项目,也算是温故而知新吧. 最流行的Android组件大全 http://www.open-open.com/li ...
- C#开发ActiveX控件,.NET开发OCX控件案例 【转】
http://xiaochen.2003.4.blog.163.com/blog/static/480409672012530227678/ 讲下什么是ActiveX控件,到底有什么作用?在网页中又如 ...
- erlang 小程序:整数序列,搜索和为正的最长子序列
近期学习了一下erlang, 编了个小程序 算法例如以下: 把參数分为三个 当前位置的前子序列(Save)(比方 -5, 1,2,-1, _, ... ) 当前位置为_时, 前子序列就是 1,2,-1 ...
- 深入浅出WPF----第五章----控件与布局
你可以把控件想象成一个容器,容器里装的东西就是它的内容.控件的内容可以直接是数据,也可以是控件.当控件的内容还是控件的时候就形成了控件的嵌套.我们把被嵌套的控件称为子级控件,这种控件嵌套在U1布局时尤 ...
- python(11)- 文件处理
文件操作 1.1 对文件操作流程 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 现有文件如下: 昨夜寒蛩不住鸣. 惊回千里梦,已三更. 起来独自绕阶行. 人悄悄,帘外月胧明 ...
- mysql大数据量下修改表结构的方法
http://www.blogjava.net/anchor110/articles/361152.html
- 教你使用 Reflexil 反编译.NET
简介 反编译的方式有很多种,其实最靠谱的还是IL反编译. 如果不懂IL可以尝试我这边文章入门:http://www.wxzzz.com/278.html 不过我下面要说的不是IL这种底层的代码反编译, ...
- kubernetes调度之资源配额
系列目录 当多个用户或者开发团队共享一个有固定节点的的kubernetes集群时,一个团队或者一个用户使用的资源超过他应当使用的资源是需要关注的问题,资源配额是管理员用来解决这个问题的一个工具. 资源 ...
- spring源码解析——2容器的基本实现(第2版笔记)
感觉第二版写的略潦草,就是在第一版的基础上加上了新的流行特性,比如idea,springboot,但是,潦草痕迹遍布字里行间. 虽然换成了idea,但是很多截图还是eclipse的,如果不是看了第一版 ...
- [CPP] Coding Style
C++ Coding Style C++很多强大的语言特性导致它的复杂,其复杂性会使得代码更容易出现bug.难于阅读和维护. 由于,本人有一点点代码洁癖,所以依照Google的C++编程规范<G ...