Nearest Common Ancestors POJ - 1330 (LCA)
|
Nearest Common Ancestors
Description A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. Write a program that finds the nearest common ancestor of two distinct nodes in a tree. Input The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.
Output Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.
Sample Input 2 Sample Output 4 Source |
题意:给出n个点,n-1条边的树,求lca(u,v);
思路:LCA
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#include<map>
using namespace std;
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN=;
const int DEG=; struct Edge{
int to,next;
}edge[MAXN*];
int head[MAXN],tot;
void addedge(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void init(){
tot=;
memset(head,-,sizeof(head));
}
int fa[MAXN][DEG]; //fa[i][j]表示结点i的第2^j个祖先
int deg[MAXN]; //深度数组 void bfs(int root){
queue<int>que;
deg[root]=;
fa[root][]=root;
que.push(root);
while(!que.empty()){
int tmp=que.front();
que.pop();
for(int i=;i<DEG;i++)
fa[tmp][i]=fa[fa[tmp][i-]][i-];
for(int i=head[tmp];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v==fa[tmp][])continue;
deg[v]=deg[tmp]+;
fa[v][]=tmp;
que.push(v);
}
}
}
int LCA(int u,int v){
if(deg[u]>deg[v])swap(u,v);
int hu=deg[u],hv=deg[v];
int tu=u,tv=v;
for(int det=hv-hu,i=;det;det>>=,i++)
if(det&)
tv=fa[tv][i];
if(tu==tv)return tu;
for(int i=DEG-;i>=;i--){
if(fa[tu][i] == fa[tv][i])continue;
tu=fa[tu][i];
tv=fa[tv][i];
}
return fa[tu][];
}
bool flag[MAXN];
int main(){
int T,n,u,v;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
init();
memset(flag,false,sizeof(flag));
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
flag[v]=true;
}
int root;
for(int i=;i<=n;i++)
if(!flag[i]){
root=i;
break;
}
bfs(root);
scanf("%d%d",&u,&v);
printf("%d\n",LCA(u,v));
}
}
Nearest Common Ancestors POJ - 1330 (LCA)的更多相关文章
- POJ 1330 (LCA)
http://poj.org/problem?id=1330 题意:给出一个图,求两个点的最近公共祖先. sl :水题,贴个模板试试代码.本来是再敲HDU4757的中间发现要用LCA, 操蛋只好用这 ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)
LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...
- POJ 1330 Nearest Common Ancestors (模板题)【LCA】
<题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...
- POJ 1330(LCA/倍增法模板)
链接:http://poj.org/problem?id=1330 题意:q次询问求两个点u,v的LCA 思路:LCA模板题,首先找一下树的根,然后dfs预处理求LCA(u,v) AC代码: #inc ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 30147 Accept ...
- POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14902 Accept ...
随机推荐
- volatile底层原理详解
今天我们聊聊volatile底层原理: Java语言规范对于volatile定义如下: Java编程语言允许线程访问共享变量,为了确保共享变量能够被准确和一致性地更新,线程应该确保通过排它锁单独获得这 ...
- android 开发-文件存储之读写sdcard
android提供对可移除的外部存储进行文件存储.在对外部sdcard进行调用的时候首先要调用Environment.getExternalStorageState()检查sdcard的可用状态.通过 ...
- Customers Who Never Order
Suppose that a website contains two tables, the Customers table and the Orders table. Write a SQL qu ...
- eclipse调试(转)
step into : 单步执行,遇到子函数就进入并且继续单步执行(F5) step over: 在单步执行时,在函数内遇到子函数时不会进入子函数内单步执行,而是将子函数整个执行完在停止,也就是把子函 ...
- 从零开始的全栈工程师——js篇2.16
js操作css样式 div.style.width=“200px” 在div标签内我们添加了一个style属性 并设定了width值 这种写法会给标签带来了大量的style属性 跟实际项目是不符的 我 ...
- 【java】使用URL和CookieManager爬取页面的验证码和cookie并保存
使用java的net包和io包下的几个工具爬取页面的验证码图片并保存到本地. 然后可以把获取的cookie保存下来,做进一步处理.比如通过识别验证码,进一步使用验证码和用户名,密码,保存下来的cook ...
- python 学习之FAQ:find 与 find_all 使用
FAQ记录 1. 错误源码 错误源码如下 def fillUnivList(_html,_ulist): soup =BeautifulSoup(_html,'html.parser') fo ...
- win10蓝牙添加设备无法连接
解决方法: 打开运行窗口,输入services.msc. 找到蓝牙支持服务(或者Bluetooth Support Service),右键,属性,启动类型选择手动,启动服务. 还不行的话,此电脑右键, ...
- js 中的 Math.ceil() Math.floor Math.round()
alert(Math.ceil(25.9)); alert(Math.ceil(25.5)); alert(Math.ceil(25.1)); alert(Math.round(25.9)); ale ...
- NYOJ-255-C小加 之 随机数
原题链接 C小加 之 随机数 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 ACM队的“C小加”同学想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用 ...