CF1175E Minimal Segment Cover 题解
题意:给出\(n\)个形如\([l,r]\)的线段。\(m\)次询问,每次询问区间\([x,y]\),问至少选出几条线段,使得区间\([x,y]\)的任何一个部位都被至少一条线段覆盖。
首先有一个显然的贪心,设询问区间为\([l,r]\),则所取的区间最靠左的一个的左端点必定小于等于\(l\),并且要使这个区间尽可能地向右延伸。
取完第一个之后,重复以上的贪心,直至满足条件,那么这样的答案必定是最小的。
但是这样的时间复杂度是\(O(nm)\)的,所以要考虑优化,优化方法是用倍增,每次向右跳\(2^i\)条线段,那么复杂度就变成\(O(n\log m)\)了。于是本题就解决了。
代码:
#include<bits/stdc++.h>
using namespace std;
#define N 200005
#define M 500005
inline int read()
{
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
int ans=0;
while(isdigit(ch))
{
ans=ans*10+ch-48;
ch=getchar();
}
return ans;
}
int suf[M][25];
int main()
{
int n,m;
cin>>n>>m;
int x,y;
for(int i=1;i<=n;i++)
{
x=read(),y=read();
x++;
if(suf[x][0]<y)
{
suf[x][0]=y;
}
}
for(int i=1;i<=M;i++)
{
suf[i][0]=max(suf[i][0],suf[i-1][0]);
}
for(int i=1;i<=19;i++)
{
for(int j=1;j<=M;j++)
{
suf[j][i]=suf[suf[j][i-1]+1][i-1];
}
}
for(int i=1;i<=m;i++)
{
x=read(),y=read();
int ans=0;
for(int j=19;j>=0;j--)
{
if(suf[x+1][j]<y&&suf[x+1][j]>x)
{
x=suf[x+1][j];
ans+=(1<<j);
}
}
ans++;x=suf[x+1][0];
if(x<y) printf("-1\n");
else printf("%d\n",ans);
}
return 0;
}
CF1175E Minimal Segment Cover 题解的更多相关文章
- CF1175E Minimal Segment Cover
题目链接 题意 给出n条线段.m次询问,每次询问给出一个区间\([l,r]\)问最少需要多少条线段才能覆盖区间\([l,r]\). 所有坐标\(\le 5\times 10^5\).\(n,m\le ...
- Codeforces 1175E Minimal Segment Cover
题意: 有\(n\)条线段,区间为\([l_i, r_i]\),每次询问\([x_i, y_i]\),问要被覆盖最少要用多少条线段. 思路: \(f[i][j]\)表示以\(i\)为左端点,用了\(2 ...
- CodeForces - 1175E Minimal Segment Cover (倍增优化dp)
题意:给你n条线段[l,r]以及m组询问,每组询问给出一组[l,r],问至少需要取多少个线段可以覆盖[l,r]区间中所有的点. 如果贪心地做的话,可以求出“从每个左端点l出发选一条线段可以到达的最右端 ...
- codeforces1175E Minimal Segment Cover 倍增
题目传送门 题意:给出n条平行于x轴的线段,q次询问,每次询问一个区间最少要几条线段来覆盖,若不能覆盖则输出-1. 思路:先考虑贪心,必定是先找到,所有左端点小于等于$x$的线段的右端点最大在哪里,然 ...
- [LightOJ1240]Point Segment Distance 题解
题意简述 原题LightOJ 1240,Point Segment Distance(3D). 求三维空间里线段AB与C. 题解 我们设一个点在线段AB上移动,然后发现这个点与原来的C点的距离呈一个单 ...
- Gym 100431E Word Cover 题解:KMP上跑dp
题意: 给你一个串,问你他的每个前缀的最小重复单元,其中单元是可以重叠的,最后按顺序输出即可.比如样例中abaabaa的最小重复单元为abaa,所以相应输出为4. 样例: input : abaaba ...
- HDU 1166 敌兵布阵 Segment Tree题解
本题是最主要的分段树操作了.或者一般叫线段树,只是好像和线段没什么关系,仅仅是分段了. 不使用lazy标志,更新仅仅是更新单点. 假设不使用分段树,那么更新时间效率仅仅须要O(1),使用分段树更新效率 ...
- Codeforces Edu Round 66 A-E
A. From Hero to Zero 通过取余快速运行第一步即可.由于\(a \% b (a >= b) <= \frac{a}{2}\).所以总复杂度不超过\(O(log_2n)\) ...
- Educational Codeforces Round 97 (Rated for Div. 2)【ABCD】
比赛链接:https://codeforces.com/contest/1437 A. Marketing Scheme 题解 令 \(l = \frac{a}{2}\),那么如果 \(r < ...
随机推荐
- the ACID properties of HBase
http://hbase.apache.org/acid-semantics.html Apache HBase (TM) is not an ACID compliant database. How ...
- Use Apache HBase™ when you need random, realtime read/write access to your Big Data.
Apache HBase™ is the Hadoop database, a distributed, scalable, big data store. Use Apache HBase™ whe ...
- The Little Match Girl,摘自iOS应用Snow White and more stories
Many years ago on a cold and snowy New Year's Eve, a poor little girl was wandering arround on the s ...
- TTimer很特殊
TTimer = class(TComponent) private FInterval: Cardinal; FWindowHandle: HWND; FOnTimer: TNotifyEvent; ...
- rac_udev建立磁盘方式安装grid时不识别磁盘
原创作品,出自 "深蓝的blog" 博客,欢迎转载,转载时请务必注明下面出处,否则追究版权法律责任. 深蓝的blog:http://blog.csdn.net/huangyanlo ...
- SVN在myeclipse中新建地址的时出现被拒绝
新建资源库地址: 控制台提示信息: svn: connection refused by the server svn: connection refused by the server Connec ...
- STL之队列的运用
卡片游戏:非常好地介绍了队列的特点和应用 桌上有一叠牌,从第一张牌開始从上往下依次编号1~n.当至少还剩两张牌时进行例如以下操作:把第一张牌扔掉,然后把新的第一张牌放到整叠牌的最后. 输入n,输出每次 ...
- 关于oracle批量插入数据遇到的问题
截取部分日志信息: 2015-09-01 14:48:47,132 INFO [org.springframework.beans.factory.xml.XmlBeanDefinitionReade ...
- UVA1025 A Spy in the Metro —— DP
题目链接: https://vjudge.net/problem/UVA-1025 题解: 详情请看紫书P267. 与其说是DP题,我觉得更像是模拟题,特别是用记忆化搜索写. 递推: #include ...
- 一看就会,科目三靠边停车30cm技巧!再也不怕不会停车了!
靠边停车是科目三考试的最后一关,如果在这一关失败,那之前所有的努力都功亏一篑了,你感觉吃不吃亏?就连我们自己平时开车,轮胎万一与路边石阶刮蹭,就会造成不小的伤害.那么靠边停车时有哪些注意要点呢?请和小 ...