[集训队作业2013] 城市规划(NTT)
一周一博客二专题计划
题面
n 个点的简单 (无重边无自环) 有标号无向连通图数目。
看着就很典
思路
设\(f(n)\)为n点连通图数目。设\(g(n)\)为n点不一定联通图数目,显然直接枚举每条边是否存在,\(g(n)=2^{\frac{n*(n-1)}{2}}\)
\]
可看作枚举1号节点所在连通块的大小,组合数是从其他n-1个点中选出与1同联通块的点
很多博客都是推完式子然后发现卷积形式。其实应该看到多项式相乘,考虑卷积求解,化式子时尽量将i相关放在一起,n-i相关放在一起
而组合数上的n-1明显要拆出来
\]
很明显,设
\]
\]
\]
有
\]
NTT的式子已经出来了,不同的是此时我们已知\(c\)而想求\(a\),直接对\(b\)多项式求逆\(a=c*invb\)
答案\(f(n)=a_{n-1}*(n-1)!\)
代码
#include<bits/stdc++.h>
using namespace std;
const int MAX=2.7e5+10;
#define int long long
const int mod=1004535809;
int n,bl,bc,rev[MAX],a[MAX],b[MAX],f[MAX],g[MAX];
int fac[MAX],inv[MAX],c[MAX];
inline int read(){
int x=0,f=1;char c=getchar();
while(c>'9'||c<'0'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=(x<<3)+(x<<1)+(c^'0');c=getchar();}
return x*f;
}
inline int power(int a,int b){
int res=1;
while(b){
if(b&1) res=res*a%mod;
a=a*a%mod;b>>=1;
}return res;
}inline void NTT(int*,int,int);
void solve(int);
inline void work(int len){
bl=1;bc=0;
while(bl<=len) bl<<=1,++bc;
for(int i=0;i<bl;++i)
rev[i]=(rev[i>>1]>>1)|((i&1)<<bc-1);
}
signed main(){
n=read();fac[0]=1;
for(int i=1;i<=n;++i) fac[i]=fac[i-1]*i%mod;
inv[n]=power(fac[n],mod-2);
for(int i=n-1;i>=0;--i) inv[i]=inv[i+1]*(i+1)%mod;
f[0]=1;c[0]=1;
for(int i=1;i<n;++i){
f[i]=power(2,(i-1)*i/2)*inv[i]%mod;
c[i]=power(2,i*(i+1)/2)*inv[i]%mod;
}
solve(n);work(n<<1);
NTT(g,bl,1);NTT(c,bl,1);
for(int i=0;i<bl;++i) g[i]=g[i]*c[i]%mod;
NTT(g,bl,-1);printf("%d",g[n-1]*fac[n-1]%mod);
}
void solve(int len){
if(len==1){g[0]=power(f[0],mod-2);return;}
solve(len+1>>1);work(len+n);
memcpy(a,f,sizeof(a));memset(b,0,sizeof(b));
for(int i=0;i<len+1>>1;++i) b[i]=g[i];
NTT(a,bl,1);NTT(b,bl,1);
for(int i=0;i<bl;++i) g[i]=b[i]*((2-a[i]*b[i]%mod+mod)%mod)%mod;
NTT(g,bl,-1);
}inline void NTT(int *a,int n,int op){
for(int i=0;i<n;++i)
if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int wn=power(3,(op*(mod-1)/(i<<1)+mod-1)%(mod-1));
for(int j=0;j<n;j+=i<<1){
int w=1;
for(int k=0;k<i;++k){
int x=a[j+k],y=a[j+k+i]*w%mod;
a[j+k]=(x+y)%mod;a[j+k+i]=(x-y+mod)%mod;
w=w*wn%mod;
}
}
}if(op==-1){
int inv=power(n,mod-2);
for(int i=0;i<n;++i) a[i]=a[i]*inv%mod;
}
}
[集训队作业2013] 城市规划(NTT)的更多相关文章
- [洛谷P4841][集训队作业2013]城市规划
传送门 题目大意 求出\(n\)个点的简单(无重边无自环)有标号无向连通图数目.\(n\leq 130000\). 题解 题意非常简单,但做起来很难.这是道生成函数经典题,博主当做例题学习用的.博主看 ...
- [题解] LuoguP4841 [集训队作业2013]城市规划
Description 求\(n\)个点无重边.无自环.带标号的无向联通图个数,对\(1004535809\)(\(479 \times 2^{21} + 1\))取模.\(n \le 130000\ ...
- [题解] BZOJ 3456 洛谷 P4841 [集训队作业2013]城市规划 多项式,分治FFT
题目 令\(f_i\)表示n个点的答案.考虑容斥,用所有连边方案减去有多个连通块的方案.枚举1号点所在的连通块大小: \(f_i=2^{i(i-1)/2}-\sum_{j>0}^{i-1}f_j ...
- Solution -「集训队作业 2013」「洛谷 P4841」城市规划
\(\mathcal{Description}\) link. 求 \(n\) 个结点的简单无向连通图个数,对 \(1004535809~(479\times2^{21}+1)\) 取模. ...
- UOJ #449. 【集训队作业2018】喂鸽子
UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...
- UOJ#428. 【集训队作业2018】普通的计数题
#428. [集训队作业2018]普通的计数题 模型转化好题 所以变成统计有标号合法的树的个数. 合法限制: 1.根标号比子树都大 2.如果儿子全是叶子,数量B中有 3.如果存在一个儿子不是叶子,数量 ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)
[UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- UOJ#418. 【集训队作业2018】三角形
#418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2= ...
随机推荐
- 谱图论:Laplacian二次型和Markov转移算子
以下部分是我学习CMU 15-751: TCS Toolkit的课堂笔记.由于只是个人笔记,因此许多地方在推导上可能不那么严谨,还望理论大佬多多包涵. 1 问题定义 1.1 无向图\(G\) 在本文中 ...
- 浅析依赖属性(DependencyProperty)
在WPF中,引入了依赖属性这个概念,提到依赖属性时通常都会说依赖属性能节省实例对内存的开销.此外依赖属性还有两大优势. 支持多属性值,依赖属性系统可以储存多个值,配合Expression.Style. ...
- xshell无法调用gdc
现象: <topprod:/u1/topprod/tiptop> exe2 p_zzExecute program:p_zz<topprod:/u1/topprod/tiptop&g ...
- Tarjan强连通分量详解
1.简介: 在阅读下列内容之前,请务必了解 图论相关概念 中的基础部分. 强连通的定义是:有向图 G 强连通是指,G 中任意两个结点连通. 强连通分量(Strongly Connected Compo ...
- [CF1178 F2] Long Colorful Strip
F2 - Long Colorful Strip 很牛的题! 首先,我们可以将颜色相同的一段区间缩成一个点,那么每次加入一个新的颜色时,最多只能将其所覆盖的那个颜色所属的区间分成三部分(原本:0000 ...
- P3214 [HNOI2011] 卡农 题解
感觉不是很麻烦,可能就组合排列转化绕一点... 抽象化题意 给定 \(n\) 个元素,从中选出 \(m\) 个集合,要求: 集合不为空,集合里不能有相同的元素 \(m\) 个集合都互不相同 所有元素被 ...
- P1144 最短路计数 题解
Problem 考察算法:拓扑排序 + \(DP\) + \(Dijkstra\). 题目简述 给出一个无向无权图,问从顶点 \(1\) 开始,到其他每个点的最短路有几条. 思路 先求出 \(1\) ...
- 不同角度理解线程的状态(操作系统 & Java API)
3.12 五种状态 ( 操作系统 层面) 这是从 操作系统 层面来描述的 [初始状态]仅是在语言层面创建了线程对象,还未与操作系统线程关联 [可运行状态](就绪状态)指该线程已经被创建(与操作系统线程 ...
- Python JSON 使用指南:解析和转换数据
JSON 是一种用于存储和交换数据的语法.JSON 是文本,使用 JavaScript 对象表示法编写. Python 中的 JSON Python 有一个内置的 json 包,可用于处理 JSON ...
- JavaScript 语法:流程控制语句
作者:WangMin 格言:努力做好自己喜欢的每一件事 JavaScript流程控制语句的三种基本结构:顺序结构,选择结构,循环结构 顺序结构 从上到下执行的代码就是顺序结构,程序默认就是由上到下顺序 ...