cf1453F 二维DP 思维

原题链接

题意

目前我们有一个序列,在第i个点可以走到[i + 1, i + a[i]]区间内的任意一点(也就是说如果a[i]是0,路就走不通了)

现在要求我们将一些位置置零,使得从1走到n只有一条路径。输出最小置零数量,保证输入有解。

思路

  • 因为n<=3000,所以尝试二维动态规划。首先设计状态是最重要的一步,我们定义 \(F_{i,j}\) 为从1到i仅有一条路径,且路径中的点最远到达不超过j,这种情况下的最小置零个数。
  • 那么显然 \(F_{1,j}\) 全为0,答案为 \(F_{n,n}\)
  • 从2开始计算,对于当前的i,我们枚举i - 1 ~ 1的所有点,如果有 \(j + a_j \ge i\),那么我们当前的 \(F_{i,j + a_j}\)就是可以更新的, 转移方程如下
\[F_{i,j + a_j} = min(F_{i,j + a_j}, F_{j, i - 1} + cnt)
\]

其中cnt是从j + 1到i - 1所有的点中,能够到达i的点的数量(就是说这些cnt个点都需要置零),由于我们是从i - 1到1的顺序枚举的,所以cnt可以顺带记录

AC代码

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std; int ff[3005][3005], aa[3005];
int t, n; int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
for (int i = 1; i <= n; ++i)
{
scanf("%d", &aa[i]);
for (int j = 1; j <= n; ++j)
{
ff[i][j] = 99999999;
}
}
for (int i = 1; i <= n; ++i)
{
ff[1][i] = 0;
}
for (int i = 2; i <= n; ++i)
{
int cnt = 0;
for (int j = i - 1; j >= 1; --j)
{
if (j + aa[j] >= i)
{
ff[i][j + aa[j]] = min(ff[i][j + aa[j]], ff[j][i - 1] + cnt);
++cnt;
}
}
for (int j = i + 1; j <= n; ++j)
{
ff[i][j] = min(ff[i][j - 1], ff[i][j]);
}
}
printf("%d\n", ff[n][n]);
}
return 0;
}

cf1453F 二维DP 思维的更多相关文章

  1. HDU - 2159 FATE(二维dp之01背包问题)

    题目: ​ 思路: 二维dp,完全背包,状态转移方程dp[i][z] = max(dp[i][z], dp[i-1][z-a[j]]+b[j]),dp[i][z]表示在杀i个怪,消耗z个容忍度的情况下 ...

  2. 洛谷p1732 活蹦乱跳的香穗子 二维DP

    今天不BB了,直接帖原题吧  地址>>https://www.luogu.org/problem/show?pid=1732<< 题目描述 香穗子在田野上调蘑菇!她跳啊跳,发现 ...

  3. 传纸条 NOIP2008 洛谷1006 二维dp

    二维dp 扯淡 一道比较基本的入门难度的二维dp,类似于那道方格取数,不过走过一次的点下次不能再走(看提交记录里面好像走过一次的加一次a[i][j]的也AC了,,),我记得当年那道方格取数死活听不懂, ...

  4. 洛谷P1048 采药 二维dp化一维

    题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个 ...

  5. 关于二维DP————站上巨人的肩膀

    意匠惨淡经营中ing, 语不惊人死不休........ 前几天学了DP,做了个简单的整理,记录了关于DP的一些概念之类的,今天记录一下刚学的一个类型 ----关于二维DP 那建立二维数组主要是干嘛用的 ...

  6. BZOJ 2748: [HAOI2012]音量调节【二维dp,枚举】

    2748: [HAOI2012]音量调节 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2010  Solved: 1260[Submit][Statu ...

  7. To the Max 二维dp(一维的变形)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  8. POJ 1661 Help Jimmy(二维DP)

    题目链接:http://poj.org/problem?id=1661 题目大意: 如图包括多个长度和高度各不相同的平台.地面是最低的平台,高度为零,长度无限. Jimmy老鼠在时刻0从高于所有平台的 ...

  9. SGU104 二维dp

    大致题意: n个东西放在(1.2.3...m)个容器中,先放的必需在后方的左边.a[i][j]表示i号物品放在j容器所得 的价值,求最大价值. 几乎是刚刚开始接触动态规划题,开始我这样想 每个东西一件 ...

  10. 洛谷1387(基础二维dp)

    题目很简单,数据也很小,但是思路不妨借鉴:dp[i][j]代表以(i,j)为右下角的最长正方形边长. 类比一维里面设“以XX为结尾的最XXX(所求)”. 另外define不要乱用!尤其这种min套mi ...

随机推荐

  1. Go 语言开发环境搭建

    Go 语言开发环境搭建 目录 Go 语言开发环境搭建 一. GO 环境安装 1.1 下载 1.2 Go 版本的选择 1.3 安装 1.3.1 Windows安装 1.3.2 Linux下安装 1.3. ...

  2. Python基础合集

    入门介绍 01.python由来与发展介绍 02.WEB项目开发流程 第一篇 markdown编辑器 01.markdown基本语法 02.Typora简介与安装 03.Windows上gitee+T ...

  3. 什么是 CSS?

    1.什么是 CSS? CSS 指的是层叠样式表* (Cascading Style Sheets) CSS 描述了如何在屏幕.纸张或其他媒体上显示 HTML 元素 CSS 节省了大量工作.它可以同时控 ...

  4. Go接口 - 构建可扩展Go应用

    本文深入探讨了Go语言中接口的概念和实际应用场景.从基础知识如接口的定义和实现,到更复杂的实战应用如解耦与抽象.多态.错误处理.插件架构以及资源管理,文章通过丰富的代码示例和详细的解释,展示了Go接口 ...

  5. js数据结构--队列

    <!DOCTYPE html> <html> <head> <title></title> </head> <body&g ...

  6. Redis 6 学习笔记 3 —— 用SpringBoot整合Redis的踩坑,了解事务、乐观锁、悲观锁

    SpringBoot整合Redis时踩到的坑 jdk1.8环境,用idea的Spring Initializr创建spring boot项目,版本我选的2.7.6.pom文件添加的依赖如下,仅供参考. ...

  7. 每天5分钟复习OpenStack(七)内存虚拟化

    标题中的存储虚拟化,涉及到两个方面,分别是内存和磁盘的虚拟化技术.内存的虚拟化就不得不提EPT和VPID 技术. 首先申明下本人其实不想写一些纯理论的东西,但是架不住面试经被问,为此特将一些特别复杂的 ...

  8. Hooks的核心原理梳理

    我们前端都在诟病专业版,它的组件,它的耦合嵌套之深,它的性能. 我们希望改善,我们认为,如果--就好了. 如果重构就好了,如果技术栈统一就好了,如果有规范就好了. 其实,不用等,我们只要在写代码,就可 ...

  9. EFCore 使用FluntApi配置 全局查询筛选器

    我们在类中通常会有一个属性为 IsDel来表示软删除或也称逻辑删除,这个属性会导致我们在进行查询操作时,每一次都要 .where(s=>s.IsDel==false) 非常的麻烦.在使用efCo ...

  10. 27. 干货系列从零用Rust编写正反向代理,Rust中日志库的应用基础准备

    wmproxy wmproxy已用Rust实现http/https代理, socks5代理, 反向代理, 静态文件服务器,四层TCP/UDP转发,内网穿透,后续将实现websocket代理等,会将实现 ...