Your task is, given an integer N, to make a palidrome (word that reads the same when you reverse it) of length at least N. Any palindrome will do. Easy, isn’t it? That’s what you thought before you passed it on to your inexperienced team-mate. When the contest is almost over, you find out that that problem still isn’t solved. The problem with the code is that the strings generated are often not palindromic. There’s not enough time to start again from scratch or to debug his messy code. Seeing that the situation is desperate, you decide to simply write some additional code that takes the output and adds just enough extra characters to it to make it a palindrome and hope for the best. Your solution should take as its input a string and produce the smallest palindrome that can be formed by adding zero or more characters at its end. Input Input will consist of several lines ending in EOF. Each line will contain a non-empty string made up of upper case and lower case English letters (‘A’-‘Z’ and ‘a’-‘z’). The length of the string will be less than or equal to 100,000. Output For each line of input, output will consist of exactly one line. It should contain the palindrome formed by adding the fewest number of extra letters to the end of the corresponding input string. Sample Input aaaa abba amanaplanacanal xyz Sample Output aaaa abba amanaplanacanalpanama

题意:

在字符串末尾附加最少的字母,使其成为回文串。

思路:

求得字符串结尾处的回文串长度,保持结尾处回文串不变,其他的翻转一下即可。

注意使用后缀数组时,要对后缀的起始位置进行约束,否则会出错,如:aaaaaaabaaaa

#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime> #define fuck(x) cerr<<#x<<" = "<<x<<endl;
#define debug(a, x) cerr<<#a<<"["<<x<<"] = "<<a[x]<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 0x3f3f3f3f;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); char s[maxn];
int len, Rank[maxn], sa[maxn], tlen, tmp[maxn]; bool compare_sa(int i, int j) {
if (Rank[i] != Rank[j]) { return Rank[i] < Rank[j]; }
//如果以i开始,长度为k的字符串的长度,已经超出了字符串尾,那么就赋值为-1
//这是因为,在前面所有数据相同的情况下,字符串短的字典序小.
int ri = i + tlen <= len ? Rank[i + tlen] : -inf;
int rj = j + tlen <= len ? Rank[j + tlen] : -inf;
return ri < rj;
} void construct_sa() {
//初始的RANK为字符的ASCII码
for (int i = ; i <= len; i++) {
sa[i] = i;
Rank[i] = i < len ? s[i] : -inf;
}
for (tlen = ; tlen <= len; tlen *= ) {
sort(sa, sa + len + , compare_sa);
tmp[sa[]] = ;
//全新版本的RANK,tmp用来计算新的rank
//将字典序最小的后缀rank计为0
//sa之中表示的后缀都是有序的,所以将下一个后缀与前一个后缀比较,如果大于前一个后缀,rank就比前一个加一.
//否则就和前一个相等.
for (int i = ; i <= len; i++) {
tmp[sa[i]] = tmp[sa[i - ]] + (compare_sa(sa[i - ], sa[i]) ? : );
}
for (int i = ; i <= len; i++) {
Rank[i] = tmp[i]; }
}
} int height[maxn]; void construct_lcp() {
// for(int i=0;i<=n;i++){Rank[sa[i]]=i;}
int h = ;
height[] = ;
for (int i = ; i < len; i++) {//i为后缀数组起始位置
int j = sa[Rank[i] - ];//获取当前后缀的前一个后缀(排序后)
if (h > )h--;
for (; j + h < len && i + h < len; h++) {
if (s[j + h] != s[i + h])break;
}
height[Rank[i]] = h;
}
} int st[maxn][]; void rmq_init() {
for (int i = ; i <= len; i++) {
st[i][] = height[i];
}
int l = ;
for (int i = ; l <= len; i++) {
for (int j = ; j + l / <= len; j++) {
st[j][i] = min(st[j][i - ], st[j + l / ][i - ]);
}
l <<= ;
}
} int ask_min(int i, int j) {
int k = int(log(j - i + 1.0) / log(2.0));
return min(st[i][k], st[j - ( << k) + ][k]);
} int lcp(int a, int b)//此处参数是,原字符串下标
{
a = Rank[a], b = Rank[b];
if (a > b)
swap(a, b);
return ask_min(a + , b);
} int solve(){
int ans=,pos=;
for(int i=;i<=len;i++){
if(sa[i]==len/+){
pos=i;
break;
}
}
int mn=inf;
for(int i=pos+;i<=len;i++){
mn=min(height[i],mn);
if(sa[i]==len/-mn){
ans=max(mn,ans);
}
}
mn=inf;
for(int i=pos;i>=;i--){
mn=min(height[i],mn);
if(sa[i-]==len/-mn){
ans=max(mn,ans);
}
} return ans; } int main() {
// ios::sync_with_stdio(false);
// freopen("in.txt", "r", stdin); while (scanf("%s",s)!=EOF){
len=strlen(s);
s[len]='$';
for(int i=;i<len;i++){
s[len*-i]=s[i];
} len=len*+;
height[len+]=;
s[len]=;
construct_sa();
construct_lcp();
int l=,r=len;
int ans=solve();
len/=;
int tmps=len-ans;
for(int i=;i<tmps;i++){
s[len+i]=s[len-ans-i-];
}
s[len+tmps]=;
printf("%s\n",s);
} return ;
}

UVA - 11475 Extend to Palindrome (后缀数组)的更多相关文章

  1. uva 11475 - Extend to Palindrome(KMP)

    option=com_onlinejudge&Itemid=8&category=506&page=show_problem&problem=2470" ta ...

  2. UVA 11475 Extend to Palindrome(后缀数组+ST表)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/27647 [题目大意] 给出一个字符串,要求在其后面添加最少的字符数,使得其成为一个回文串.并输出这个回文串 ...

  3. UVA - 11475 Extend to Palindrome —— 字符串哈希 or KMP or 后缀数组

    题目链接:https://vjudge.net/problem/UVA-11475 题意: 给出一个字符串,问在该字符串后面至少添加几个字符,使得其成为回文串,并输出该回文串. 题解: 实际上是求该字 ...

  4. UVA 11475 Extend to Palindrome (kmp || manacher || 后缀数组)

    题目链接:点击打开链接 题意:给你一个串,让你在串后面添加尽可能少的字符使得这个串变成回文串. 思路:这题可以kmp,manacher,后缀数组三种方法都可以做,kmp和manacher效率较高,时间 ...

  5. UVA 11475 Extend to Palindrome(hash)题解

    题意:问你最少加几个字母使所给串变成回文串. 思路:一开始打算将正序和逆序都hash,然后用提取前缀后缀的方法来找,但是RE了,debug失败遂弃之.后来发现可以直接hash,一边hash一边比较.我 ...

  6. UVA 11475 Extend to Palindrome hash

    题意: 给出一个字符串,让你往后添加最少的字符,使其成为回文串. 分析: 题目就相当于求后缀字符串为回文串的最长长度,判断回文串要O(n)时间,直接判断肯定不行.我们从后往前枚举,每次字符串与上一个字 ...

  7. UVa 11475 - Extend to Palindrome

    題目:給你一個字符串,在後面拼接一部分使得它變成回文串,使得串最短.輸出這個回文串. 分析:KMP,dp.這裡利用KMP算法將串和它的轉置匹配,看結束時匹配的長度就可以. 因為串比较長.使用KMP比较 ...

  8. URAL 1297 Palindrome 后缀数组

    D - Palindrome Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  9. URAL - 1297 Palindrome —— 后缀数组 最长回文子串

    题目链接:https://vjudge.net/problem/URAL-1297 1297. Palindrome Time limit: 1.0 secondMemory limit: 64 MB ...

随机推荐

  1. USACO93网络流入门Drainage Ditches 排水渠(DCOJ 5130)

    题目描述 (传送门:http://poj.org/problem?id=1273翻译 by sxy(AFO的蒟蒻)) 每次约翰的农场下雨,Bessie的水池里的四叶草就会被弄破.这就意味着,这些四叶草 ...

  2. oracle交互命令

    (1)说明:可以替代变量,而该变量在执行时,需要用户输入. sql>select * from emp where job=’&job’; (2)edit  说明:该命令可以编辑指定的s ...

  3. [java]网上商城错误集锦 2016-05-08 21:49 499人阅读 评论(32) 收藏

    网上商城敲到了第三天,马上就要踏入第四天啦,不过敲得这几天,学习到了不少东西,也接触了很多新东西,当然,遇到最多的,就是各种bug!下面总结一下自己遇到的这些bug. 一.时间获取不到 这个bug起源 ...

  4. UVa 825【简单dp,递推】

    UVa 825 题意:给定一个网格图(街道图),其中有一些交叉路口点不能走.问从西北角走到东南角最短走法有多少种.(好像没看到给数据范围...) 简单的递推吧,当然也就是最简单的动归了.显然最短路长度 ...

  5. HDU-1029_Ignatius and the Princess IV

    Ignatius and the Princess IV Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32767 K (Jav ...

  6. java基础-内存分配

    1.java运行时的数据区:程序计数器.方法区.虚拟机栈.本地方法栈.堆 ①.程序计数器:一块较小的内存空间,可看作当前线程所执行的字节码的行号指示器 ②.java虚拟机栈:与程序计数器一样,也是线程 ...

  7. java+内存分配及变量存储位置的区别

    Java内存分配与管理是Java的核心技术之一,之前我们曾介绍过Java的内存管理与内存泄露以及Java垃圾回收方面的知识,今天我们再次深入Java核心,详细介绍一下Java在内存分配方面的知识.一般 ...

  8. @省选模拟赛03/16 - T3@ 超级树

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...

  9. vue2——指令渲染,{{}}渲染

    博客地址 :https://www.cnblogs.com/sandraryan/ 声明式的渲染,以{{}}的形式调用数据 <!DOCTYPE html> <html lang=&q ...

  10. poj 1689 && zoj 1422 3002 Rubbery (Geometry + BFS)

    ZOJ :: Problems :: Show Problem 1689 -- 3002 Rubbery 这题是从校内oj的几何分类里面找到的. 题意不难,就是给出一个区域(L,W),这个区域里面有很 ...