机器学习:没有免费午餐定理(No Free Lunch Theorem)
思考
机器学习中哪个算法好?哪个算法差呢?
下面两条线,哪个更好呢?
没有免费午餐定理
如果我们不对特征空间有先验假设,则所有算法的平均表现是一样的。
假设我们的计算机只有两个存储单元,而且每个存储单元只能存储两个标签,一类是class1(圆圈),一类是class2(叉叉)。假设其中一个存储单元是圆圈,另一个存储单元未知,需要我们预测,预测的可能情况如下:
如果不对特征空间有假设,则可以认为这两种情况的概率差不多,也就意味着,我们无论选择预测哪个结果,成功的概率都是50%。
假设计算机的存储单元变成三个,情况变成如下:
如果不对特征空间有假设,则可以认为这四种情况的概率差不多。
三个存储单元的情况,以只两个存储单元的状态,预测第三个存储单元的结果如下:
存储单元更多的情况,"?"处应该是圆圈还是叉叉呢?
大多数人应该选择上面的"?"为圆圈,下面的“?”是叉叉,这样真的对吗?如果我们把圆圈定义成花瓣,叉叉定义成蜜蜂。上边的"?"恰好表示小蜜蜂在花瓣里,也是合理的。但是大多数算法却不这么做。
我们认为:特征差距小的样本更有可能是同一类
但是事实上,没有所谓的世界上最好的算法,只有公认的好方法(支持向量机、决策树、神经网络等)
如果这篇博客对你有用,点个赞再走呗~
机器学习:没有免费午餐定理(No Free Lunch Theorem)的更多相关文章
- 闭区间套定理(Nested intervals theorem)讲解1
① ②这里用到了极限与不等关系 ③如果a≠b,那么便不会有$\lim _{n\rightarrow \infty }\left| I_n \right| =0$ ④如果还存在一点c在 内,那么同样也不 ...
- 切比雪夫定理(Chebyshev's theorem)与经验法则(Empirical Rule)
切比雪夫定理(Chebyshev's theorem):适用于任何数据集,而不论数据的分布情况如何. 与平均数的距离在z个标准差之内的数值所占的比例至少为(1-1/z2),其中z是大于1的任意实数. ...
- (多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)
(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形. 0. 多项式长除法(Polynomial long division) Polynomi ...
- 帕斯瓦尔定理(Parseval's theorem)
∫∞−∞|x(t)|2dt=12π∫∞−∞|X(ω)|2dω=∫∞−∞|X(2πf)|2df∑n=−∞∞|x[n]|2=12π∫π−π|X(eiϕ)|2dϕ∑n=0N−1|x[n]|2=1N∑k=0N ...
- 格利文科定理(Glivenko–Cantelli Theorem)
格利文科定理:每次从总体中随机抽取1个样本,这样抽取很多次后,样本的分布会趋近于总体分布.也可以理解为:从总体中抽取容量为n的样本,样本容量n越大,样本的分布越趋近于总体分布. (注:总体数据需要独立 ...
- 闭区间套定理(Nested intervals theorem)
① ②这里用到了极限与不等关系 ③如果a≠b,那么便不会有$\lim _{n\rightarrow \infty }\left| I_n \right| =0$ ④如果还存在一点c在内,那么同样也不会 ...
- 闭区间套定理(Nested intervals theorem)讲解2
①确界与极限,看完这篇你才能明白 http://www.cnblogs.com/iMath/p/6265001.html ②这个批注由这个问题而来 表示$c$可能在$\bigcap_{n=1}^{\i ...
- 【Matrix-tree定理】【BEST Theorem】hdu6064 RXD and numbers
题意:给你一张有向图,求从1出发,回到1的欧拉回路数量. 先特判掉欧拉回路不存在时的情况. 看这个吧:http://blog.csdn.net/yuanjunlai141/article/detail ...
- 机器学习第一章——NFL的个人理解
第一篇博客,想给自己的学习加深记忆.看到书中第一个公式时,本来想直接看证明结果就好,然鹅...作者在备注上写:这里只用到一些非常基础的数学知识,只准备读第一章且有“数学恐惧”的读者可跳过...嘤嘤嘤, ...
随机推荐
- 配置一个yum私有仓库
使用一台服务器配置私有仓库做yum源,本身使用file,客户端使用http连接 安装http服务: [root@ceph1 ~]# yum -y install httpd 修改配置文件 Docume ...
- WPF 窗体快捷键(热键)
前言:在WPF项目开发当中,遇到了需要用到快捷键的需求,于是对热键做了一个快速学习,但是这方面的资源很少... 热键大致分为三种场景,下面用QQ的使用场景举例: 全局热键:QQ的Ctrl+Alt+A截 ...
- $NOIp$提高组历年题目复习
写在前面 一个简略的\(NOIp\)题高组历年题目复习记录.大部分都有单独写题解,但懒得放\(link\)了\(QwQ\).对于想的时候兜了圈子的题打上\(*\). \(NOIp2018\ [4/6] ...
- selenium自动化测试之--验证码处理
由于登录反爬措施的越来越麻烦,甚至出现了12306这种看图识物的无敌验证码,我只能说,我选择死亡.这就衍生出了使用selenium来获取获取cookies. 因为经常会出现验证码,导致我们ui自动化测 ...
- 【一起学源码-微服务】Ribbon 源码二:通过Debug找出Ribbon初始化流程及ILoadBalancer原理分析
前言 前情回顾 上一讲讲了Ribbon的基础知识,通过一个简单的demo看了下Ribbon的负载均衡,我们在RestTemplate上加了@LoadBalanced注解后,就能够自动的负载均衡了. 本 ...
- 洛谷P2858 奶牛零食 题解 区间DP入门题
题目大意: 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了 \(N(1 \le N \le 2000)\) 份美味的零食来卖给奶牛们.每天约翰售出一份零 ...
- 啊哈!C语言课后参考答案下
最近看到一本好评量很高的的C语言入门书,课本真的很好,入门的话.专业性没有那么强,但入门足够了!!好评!看着看着就想把这本书的题课后习题都写出来,最后就有了这个小结.可能有的不是最好,不那么专业,但主 ...
- Linux中du、df显示不一致问题
Linux中du.df显示不一致问题 最近在做关于Q博士的项目的时候,用到了docker进行部署,对于后端服务可能会经常变动,于是将docker容器的jar包与宿主机目录下的jar包进行绑定,之后每次 ...
- [Debug]IOS微信浏览器不支持form表单的target=_blank
测试代码如下 <?php echo '<meta name="viewport" content="width=device-width,minimum-sc ...
- AtCoder Beginner Contest 151 题解报告
总的来说,这次的题目比较水,然而菜菜的我并没有把所有题目都做完,话不多说,直接来干货: A:Next Alphabet 题目链接:https://atcoder.jp/contests/abc151/ ...