数据预处理 | 使用 Pandas 统一同一特征中不同的数据类型
出现的问题:如图,总消费金额本应该为float类型,此处却显示object
需求:将 TotalCharges 的类型转换成float

使用 pandas.to_numeric(arg, errors='raise', downcast=None) 方法,可将参数转换为数字类型。
(别的类型转换,遇到再补充)
df = pd.read_excel('./data_files/Using_Customer-Churn.xlsx')
# 将df.TotalCharges 转成数字类型的数据,则将无效解析设置为NaN
df.TotalCharges = pd.to_numeric(df.TotalCharges, errors='coerce')
df.isnull().sum()

此时,转换完成!

关于pandas.to_numeric 方法的详细信息可参见:https://www.cjavapy.com/article/532/
—————————— 手动分隔,以下为原来的野生思路 —————————
1 首先要找出本特征中,包含的数据类型究竟有哪些
# 创建一个用于盛放数据类型的列表
test_type = list() for i in churn["TotalCharges"]: # 将数据类型 不重复的放入列表中
if type(i) not in test_type:
test_type.append(type(i))
print(test_type) """
[<class 'float'>, <class 'int'>, <class 'str'>]
"""
2 查看除 float 和 int 之外的类型的数据有哪些
# 创建用于盛放数据的列表
str_values= list() for i in churn["TotalCharges"]:
if type(i) != float and type(i) != int:
# 将既不是 float 也不是 int 的数据加到列表
str_values.append(i) print(str_values) """
[' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
"""
此时得到:非数值型数据均为空格。
3 将数据统一为 float 类型
# 空值替换所有空格
churn['TotalCharges'] = churn["TotalCharges"].replace(" ",np.nan)
# 去掉含有空值的样本
churn = churn[churn["TotalCharges"].notnull()]
# 将 TotalCharges 转换成 float类型
churn['TotalCharges'] = churn['TotalCharges'].astype(float)
此时

大功告成!
遍历的方法,相对来说效率略低,Pandas 应该有什么方法,更加直接吧
纯野生思路,找到更好的办法再更新~
数据预处理 | 使用 Pandas 统一同一特征中不同的数据类型的更多相关文章
- 机器学习之数据预处理,Pandas读取excel数据
Python读写excel的工具库很多,比如最耳熟能详的xlrd.xlwt,xlutils,openpyxl等.其中xlrd和xlwt库通常配合使用,一个用于读,一个用于写excel.xlutils结 ...
- 数据预处理 | 使用 pandas.to_datetime 处理时间类型的数据
数据中包含日期.时间类型的数据可以通过 pandas 的 to_datetime 转换成 datetime 类型,方便提取各种时间信息 1 将 object 类型数据转成 datetime64 1&g ...
- 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化
1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...
- sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...
- 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介
当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...
- 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...
- 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...
- 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤
Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...
- 机器学习实战基础(十二):sklearn中的数据预处理和特征工程(五) 数据预处理 Preprocessing & Impute 之 处理分类特征:处理连续性特征 二值化与分段
处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值 ...
随机推荐
- a链接四种伪类状态切换实现人机交互
常见的color, font-family, background 等css属性都能够设置链接的样式,a链接的特殊性在于能够根据它们所处的状态来设置它们的样式.a标签与人交互的4个状态属于伪类状态切换 ...
- [红日安全]Web安全Day2 - XSS跨站实战攻防
本文由红日安全成员: Aixic 编写,如有不当,还望斧正. 大家好,我们是红日安全-Web安全攻防小组.此项目是关于Web安全的系列文章分享,还包含一个HTB靶场供大家练习,我们给这个项目起了一个名 ...
- npm下载文件临时目录、实际存放目录路劲
npm 下载文件临时存放目录 路劲:C:\Users\xxxxxx\AppData\Roaming\npm\node_modules ( C:\Users\dihongwanyan\AppData\R ...
- 【JZOJ 5048】【GDOI2017模拟一试4.11】IQ测试
题目大意: 判断一个序列是否是另外一个序列删除若干个数字之后得到的. 正文: 我们可以定义两个指针,分别指向长序列和短序列. 拿样例来举例: 如果指针指的数相同,两个指针都往右跳: 如果不同,则指向长 ...
- C#实现的一些常见时间格式
string aa = DateTime.Now.ToShortDateString();//"2019/9/23" string bb = DateTime.Now.ToShor ...
- Python 使用OS模块调用 cmd
在os模块中提供了两种调用 cmd 的方法,os.popen() 和 os.system()os.system(cmd) 是在执行command命令时需要打开一个终端,并且无法保存command命令的 ...
- opencv —— Laplacian 拉普拉斯算子、二阶导数用于边缘检测
Laplacian 算子简介 求多元函数的二阶导数的映射又称为 Laplacian 算子: 计算拉普拉斯变换:Laplacian 函数 void Laplacian(InputArray src, ...
- js函数的使用+封装+代码复用
javascript 函数 return 后面没有返回值 代表提早退出语句,return后面的语句都不再执行 此时返回值为undefined <!DOCTYPE html> <htm ...
- P1149 火柴棒等式(打表初尝试)
题目描述 给你 n 根火柴棍,你可以拼出多少个形如 “A+B=CA+B=C” 的等式?等式中的 A.B.C 是用火柴棍拼出的整数(若该数非零,则最高位不能是 0).用火柴棍拼数字 0−9 的拼法如图所 ...
- MySQL8服务无法正常启动的解决方法(1053错误)
个人博客 地址:https://www.wenhaofan.com/article/20190530120545 错误描述 在MySQL安装的最后一步启动失败,如下图所示 在服务和应用程序->服 ...