数据预处理 | 使用 Pandas 统一同一特征中不同的数据类型
出现的问题:如图,总消费金额本应该为float类型,此处却显示object
需求:将 TotalCharges 的类型转换成float

使用 pandas.to_numeric(arg, errors='raise', downcast=None) 方法,可将参数转换为数字类型。
(别的类型转换,遇到再补充)
df = pd.read_excel('./data_files/Using_Customer-Churn.xlsx')
# 将df.TotalCharges 转成数字类型的数据,则将无效解析设置为NaN
df.TotalCharges = pd.to_numeric(df.TotalCharges, errors='coerce')
df.isnull().sum()

此时,转换完成!

关于pandas.to_numeric 方法的详细信息可参见:https://www.cjavapy.com/article/532/
—————————— 手动分隔,以下为原来的野生思路 —————————
1 首先要找出本特征中,包含的数据类型究竟有哪些
# 创建一个用于盛放数据类型的列表
test_type = list() for i in churn["TotalCharges"]: # 将数据类型 不重复的放入列表中
if type(i) not in test_type:
test_type.append(type(i))
print(test_type) """
[<class 'float'>, <class 'int'>, <class 'str'>]
"""
2 查看除 float 和 int 之外的类型的数据有哪些
# 创建用于盛放数据的列表
str_values= list() for i in churn["TotalCharges"]:
if type(i) != float and type(i) != int:
# 将既不是 float 也不是 int 的数据加到列表
str_values.append(i) print(str_values) """
[' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
"""
此时得到:非数值型数据均为空格。
3 将数据统一为 float 类型
# 空值替换所有空格
churn['TotalCharges'] = churn["TotalCharges"].replace(" ",np.nan)
# 去掉含有空值的样本
churn = churn[churn["TotalCharges"].notnull()]
# 将 TotalCharges 转换成 float类型
churn['TotalCharges'] = churn['TotalCharges'].astype(float)
此时

大功告成!
遍历的方法,相对来说效率略低,Pandas 应该有什么方法,更加直接吧
纯野生思路,找到更好的办法再更新~
数据预处理 | 使用 Pandas 统一同一特征中不同的数据类型的更多相关文章
- 机器学习之数据预处理,Pandas读取excel数据
Python读写excel的工具库很多,比如最耳熟能详的xlrd.xlwt,xlutils,openpyxl等.其中xlrd和xlwt库通常配合使用,一个用于读,一个用于写excel.xlutils结 ...
- 数据预处理 | 使用 pandas.to_datetime 处理时间类型的数据
数据中包含日期.时间类型的数据可以通过 pandas 的 to_datetime 转换成 datetime 类型,方便提取各种时间信息 1 将 object 类型数据转成 datetime64 1&g ...
- 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化
1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...
- sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...
- 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介
当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...
- 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...
- 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...
- 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤
Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...
- 机器学习实战基础(十二):sklearn中的数据预处理和特征工程(五) 数据预处理 Preprocessing & Impute 之 处理分类特征:处理连续性特征 二值化与分段
处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值 ...
随机推荐
- 献给即将35岁的初学者,焦虑 or 出路?
导言:“对抗职场“35 岁焦虑”,也许唯一的方法是比这个瞬息万变的商业社会跑得更快!” 一直以来,都有许多人说“程序员或测试员是个吃青春饭的职业”,甚至还有说“35 岁混不到管理就等于失业”的言论. ...
- linux中find文件搜索命令
find 解释 命令名称:find 命令所在路径:/bin/find 执行权限:所有用户 功能描述:文件搜索 语法 find [搜索范围] [匹配条件] 匹配条件: -name 文件名(区分大小写) ...
- 多线程笔记 - Master-Worker
多线程的 Master-Worker 从字面上也是可以理解的. Master 相当于领导, 一个就够了, 如果是多个, 那么听谁的, 是个大问题. Master负责指派任务给 Worker. 然后对每 ...
- windows7安装.NET Framework 4.5.2 框架(迅雷下载链接)
.NET Framework 4.5.2 框架 数据库安装windows7安装mysql时需要 迅雷下载链接: https://download.microsoft.com/download/E/2/ ...
- hive中parquet存储格式数据类型timestamp的问题
当存储格式为parquet 且 字段类型为 timestamp 且 数据用hive执行sql写入. 这样的字段在使用impala读取时会少8小时.建议存储为sequence格式或者将字段类型设置为st ...
- Mac Docker Desktop "Mounts denied: EOF."解决方法
环境 系统: Mac OS Catalina Docker Desktop: 问题描述 在Mac环境下创建容器时用"-v"参数挂载目录出现"docker: Error r ...
- 通过Performance Monitor观察程序内存使用情况
在学习C# 数据类型和内存等知识点时,看到利用Windows系统下的Performance Monitor-性能监测工具查看程序内存的使用情况.使用过程中遇到个别小问题,现在把观察程序内存的操作步骤简 ...
- Node.js文档-模块
核心模块 Node为Javascript提供了很多服务器级别的API,绝大多数都被包装到了一个具名的核心模块中,例如文件操作的fs核心模块,http服务构建的http模块等,核心模块的使用必须通过re ...
- jsp的九大内置对象+四大作用域
1.request是httpServletRequest的对象,代表发送的请求信息 2.response是httpServletResponse的对象,代表响应请求返回的信息 3.session会话是 ...
- springBoot 中 logback配置文件详解
logback介绍和配置详解 logback是Java的开源框架,性能比log4j要好.是springboot自带的日志框架.该框架主要有3个模块: logback-core:核心代码块(不介绍) l ...