LOJ 10239 有趣的数列
首先可以将奇数视作入栈,偶数视作出栈,那么它是卡特兰数,其实打表也能看出来,而且好像可以用dp?
不过这道题的难点不在这里,p不是素数,所以不能用求逆元来做,不过前50%的分可以用杨辉三角+达标拿到,之后的分就要用到质因数分解了。
求卡特兰数的公式:$h[n]=\frac{C_{2n}^n}{n+1}$,化简之后将其分解,一开始我并没有按质因数分解,结果T了,分解质因数要更快一点。
void add(int x,int nu)
{
for(int i=;prime[i]*prime[i]<=x;i++)
while(x%prime[i]==)
{
cnt[prime[i]]+=nu;
x/=prime[i];
}
cnt[x]+=nu;
}
for(int i=n+;i<=*n;i++)add(i,);
for(int i=;i<=n;i++)add(i,-);
LL ans=;
for(int i=;i<=*n;i++)
for(int j=;j<=cnt[i];j++)
ans=ans*i%p;
代码实现
#include<iostream>
#include<cstdio>
#define LL long long
//#define int LL
using namespace std;
int n,p;
int cnt[];
int prime[],num;
bool isprime[];
#define N 20000
void s()
{
for(int i=;i<=N;i++)isprime[i]=;
for(int i=;i<=N;i++)
{
if(isprime[i])prime[++num]=i;
for(int j=;j<=num&&i*prime[j]<=N;j++)
{
isprime[i*prime[j]]=;
if(!i%prime[j])break;
}
}
}
void add(int x,int nu)
{
for(int i=;prime[i]*prime[i]<=x;i++)
while(x%prime[i]==)
{
cnt[prime[i]]+=nu;
x/=prime[i];
}
cnt[x]+=nu;
}
signed main()
{
s();
cin>>n>>p;
for(int i=n+;i<=*n;i++)add(i,);
for(int i=;i<=n;i++)add(i,-);
LL ans=;
for(int i=;i<=*n;i++)
for(int j=;j<=cnt[i];j++)
ans=ans*i%p;
cout<<ans<<endl;
}
完整代码
LOJ 10239 有趣的数列的更多相关文章
- BZOJ1485: [HNOI2009]有趣的数列
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- 【BZOJ】【1485】【HNOI2009】有趣的数列
Catalan数/组合数取模 Aha!这题我突然灵光一现就想到Catalan数……就是按顺序安排1~2n这些数(以满足前两个条件)……分配到奇数位置上的必须比偶数位置上的多(要不就不满足第三个条件了) ...
- BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )
打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
- [HNOI 2009]有趣的数列
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- [HNOI2009]有趣的数列
题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<...<a2n ...
- 【卡特兰数】BZOJ1485: [HNOI2009]有趣的数列
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数
BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ ...
- P3200 [HNOI2009]有趣的数列--洛谷luogu
---恢复内容开始--- 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3& ...
随机推荐
- 深入浅析python中的多进程、多线程、协程
深入浅析python中的多进程.多线程.协程 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源 ...
- jeecms 基本架构研究
最近工作需要内容管理系统,下载了jeecms v5 顺便学习一下它的架构: 采用框架为:Hibernate3.3.2+spring3.05+springMVC+freemarker2.3.16 Hib ...
- 使用netbeans 搭建maven工程 整合spring springmvc框架
使用netbeans7.4 自带的tomcat7.0 所以jdk选择7.xx 然后等待生成空的工程,会缺一些文件夹,和文件,后续需要的时候补齐 然后修改pom.xml添加引用,直接覆盖dependen ...
- FFT初步代码分析和逼近曲线
FFT:快速傅里叶变换 文章从两个方面来写,一个是FFT的基础知识,也就是将时域信号转换为频域信号,另一个是合成时域信号. 将时域信号转换为频域信号 代码来源于http://bigsec.net/b5 ...
- Tomcat7 Redis Session共享
1.环境 服务器 centos7 tomcat 7 redis nginx 2.配置tomcat配置文件context.xml <Valve className="com.orange ...
- 门诊叫号系统系列-1.语音叫号 .net c#
最近收到一个需求,朋友诊室需要做到门诊叫号,流程如下:病人选择医生-刷身份证排队-医生点击病人姓名叫号. 经过团队的努力,一个简易的门诊叫号系统已经完成.现在把各个功能记录下来,方便以后查看. 1.语 ...
- 阿里云SaaS生态战略发布:成就亿级营收独角兽
导语:本文中,阿里云智能资深技术专家黄省江从“势”“道”“术”三个方面分享了自己对于SaaS生态的理解,并介绍了SaaS加速器发布以来在产品.技术和商业侧最新的一些进展. 在321北京峰会上,阿里云公 ...
- hdu 2594 Simpsons’ Hidden Talents(KMP入门)
Simpsons’ Hidden Talents Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java ...
- SDUT-3403_数据结构实验之排序六:希尔排序
数据结构实验之排序六:希尔排序 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 我们已经学习了各种排序方法,知道在不同的 ...
- MaxCompute 助力衣二三构建智能化运营工具
摘要:本文由衣二三CTO程异丁为大家讲解了如何基于MaxCompute构建智能化运营工具.衣二三作为亚洲最大的共享时装平台,MaxCompute是如何帮助它解决数据提取速度慢.数据口径差异等问题呢?程 ...