import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile # 原始输入数据的目录,这个目录下有5个子目录,每个子目录底下保存这属于该
# 类别的所有图片。
INPUT_DATA = 'F:\\TensorFlowGoogle\\201806-github\\datasets\\flower_photos\\'
# 输出文件地址。我们将整理后的图片数据通过numpy的格式保存。
OUTPUT_FILE = 'F:\\shuju\\flower_processed_data.npy' # 测试数据和验证数据比例。
VALIDATION_PERCENTAGE = 10
TEST_PERCENTAGE = 10 # 读取数据并将数据分割成训练数据、验证数据和测试数据。
def create_image_lists(sess, testing_percentage, validation_percentage):
sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
is_root_dir = True
# 初始化各个数据集。
training_images = []
training_labels = []
testing_images = []
testing_labels = []
validation_images = []
validation_labels = []
current_label = 0 # 读取所有的子目录。
for sub_dir in sub_dirs:
if is_root_dir:
is_root_dir = False
continue
# 获取一个子目录中所有的图片文件。
extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
file_list = []
dir_name = os.path.basename(sub_dir)
for extension in extensions:
file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension)
file_list.extend(glob.glob(file_glob))
if not file_list:
continue
print("processing:", dir_name)
i = 0
# 处理图片数据。
for file_name in file_list:
i += 1
# 读取并解析图片,将图片转化为299*299以方便inception-v3模型来处理。
image_raw_data = gfile.FastGFile(file_name, 'rb').read()
image = tf.image.decode_jpeg(image_raw_data)
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.image.resize_images(image, [299, 299])
image_value = sess.run(image)
# 随机划分数据聚。
chance = np.random.randint(100)
if chance < validation_percentage:
validation_images.append(image_value)
validation_labels.append(current_label)
elif chance < (testing_percentage + validation_percentage):
testing_images.append(image_value)
testing_labels.append(current_label)
else:
training_images.append(image_value)
training_labels.append(current_label)
if i % 200 == 0:
print(i, "images processed.")
current_label += 1
# 将训练数据随机打乱以获得更好的训练效果。
state = np.random.get_state()
np.random.shuffle(training_images)
np.random.set_state(state)
np.random.shuffle(training_labels) return np.asarray([training_images, training_labels,validation_images, validation_labels,testing_images, testing_labels]) with tf.Session() as sess:
processed_data = create_image_lists(sess, TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
# 通过numpy格式保存处理后的数据。
np.save(OUTPUT_FILE, processed_data)

吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(1)的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  2. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  3. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  4. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  6. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  7. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  8. 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集

    # 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...

  9. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

随机推荐

  1. html5 游戏源码下载网站,你值得拥有!

    在游戏开发的学习或工作中,利用完好的游戏源码可以事半功倍,不仅可以逆向学习开拓思维,也可以大大减少设计周期. HTML5是构建Web内容的一种语言描述方式. HTML5是Web中核心语言HTML的规范 ...

  2. python的setup和teardown

    关于python unittest ① setup():每个测试函数运行前运行② teardown():每个测试函数运行完后执行③ setUpClass():必须使用@classmethod 装饰器, ...

  3. 工具 - deepin vscode中的oh-my-zsh乱码

    解决办法 https://blog.zhaytam.com/2019/04/19/powerline-and-zshs-agnoster-theme-in-vs-code/ git clone htt ...

  4. liunx详解-2

    linux安装与配置 安装配置 虚拟机配置1G内存,1核CPU,50G硬盘,网络地址转换(NAT,主机作为路由构建内网) 镜像文件:http://mirror.nsc.liu.se/centos-st ...

  5. opencv:形态学操作-腐蚀与膨胀

    #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...

  6. Bugku-CTF之细心 (想办法变成admin)

    Day30     细心

  7. CTF_论剑场 头像

    首先打开链接发现这个链接是一个头像 然后下载这个头像 通过hxd分析一下 在编辑中查找 flag 然后发现flag是一个用base64 加密的一串文字 然后我们将这串文字 解密 然后再通过md5 32 ...

  8. 删除数据高级用法:delete,truncate

    1.语法: delete 允许使用条件(删除符合条件的数据) 允许使用limit,限制删除的记录数.limit N     常见的是,limit配合order by来使用:先将结果排序,再删除固定数量 ...

  9. 每天进步一点点------入门视频采集与处理(BT656简介)

    凡是做模拟信号采集的,很少不涉及BT.656标准的,因为常见的模拟视频信号采集芯片都支持输出BT.656的数字信号,那么,BT.656到底是何种格式呢?      本文将主要介绍 标准的 8bit B ...

  10. deepin-wine-qq无法加载图片解决方案

    最近在qq水群讨论学术的时候发现了一个奇怪的问题:无法加载图片. 具体点是,如果图片没有被其他设备接收,并且在缓存中,图片是可以加载的,反之不可. 这东西很烦人啊,于是我就去查项目issue:http ...