@description@

长度为 n 的一串项链,每颗珠子是 k 种颜色之一。 第 i 颗与第 i-1,i+1 颗珠子相邻,第 n 颗与第 1 颗也相邻。

切两刀,把项链断成两条链。要求每种颜色的珠子只能出现在其中一条链中。

求方案数量(保证至少存在一种),以及切成的两段长度之差绝对值的最小值。

input

第一行 n, k (2<=k<=n<=1000000)。颜色从 1 到 k 标号。

接下来 n 个数,按顺序表示每颗珠子的颜色。(保证 k 种颜色各出现至少一次)。

output

一行两个整数:方案数量,和长度差的最小值

sample input

9 5

2 5 3 2 2 4 1 1 3

sample output

4 3

sample explain

四种方法中较短的一条分别是 (5), (4), (1,1), (4,1,1)。相差最小值 6 - 3 = 3。

@solution@

网上一查题解,woc,怎么都是用哈希做的啊。

还看到用什么优先队列过的……看不懂看不懂。

但是怎么都没有人跟我想的一个算法啊……

首先我们转换一下问题:

一个区间 [l, r] 是合法的当且仅当每种颜色要么在这个区间里面全部出现,要么在这个区间里面全部不出现。求合法区间数以及 |区间长度*2 - n| 的最小值(需要保证 l ≠ 1,不然会重复计算)。

这样就可以把环形序列转为线性序列。

然后分析一下合法区间的性质:

性质(1):如果 [a, b] 与 [c, d] 都是合法区间且 a <= c <= b <= d,则 [c, b] 是合法区间。

性质(2):如果 [a, b] 与 [c, b] 都是合法区间且 a < c <= b,则 [a, c - 1] 是合法区间;如果 [a, b] 与 [a, c] 都是合法区间且 a <= b < c,则 [b + 1, c] 是合法区间。

性质(3):如果 [a, b] 与 [b + 1, c] 都是合法区间且 a <= b < c,则 [a, c] 是合法区间。

都比较直观。

这些性质表明:我们可以把相交的合法区间转换成若干不相交的合法区间,也可以把连续的合法区间合并成更大的合法区间。

性质(4):一个合法区间的左端点,必然是每个颜色第一次出现的位置。

也比较直观。它给出了寻找合法区间的左端点的方法。

我们记 fir[i] 表示第 i 种颜色第一次出现的位置,记 lst[i] 表示第 i 种颜色最后一次出现的位置。

对于某一个左端点 fir[x],我们想要去寻找它合法的最小右端点。

首先它的右端点 >= lst[x]。我们记录一个当前的最小右端点 p,如果存在一个颜色 c,满足 fir[x] < fir[c] <= p < lst[c],则将 p 移动到 lst[c]。重复直到不存在这样的颜色为止。

最后判断是否存在一个颜色 c,满足 fir[c] < fir[x] < j <= p 且第 j 个位置也是颜色 c。此时我们可以判定以 fir[x] 为左端点不存在合法解。

可以发现,除了上面处理出来的区间和它们拼起来的区间以外不存在其他的合法区间。

因此我们就关注怎么实现上面的过程。如果直接实现是 O(n^2) 的。

对于第一步,我们将颜色按 fir[x] 从大到小排序,作一次扫描。

如果颜色 p 对应的最小区间包含颜色 q 对应的最小区间,则 q 这个区间在第一步的过程中没有 p 的限制大,我们可以直接丢掉 q。

于是我们可以在扫描的时候维护一个由不相交不包含的区间构成的栈。

如果新加入的区间包含栈顶区间,弹掉栈顶,继续循环。

如果新加入的区间与栈顶区间相交,将新加入的区间的右端点延伸到栈顶区间的右端点,弹掉栈顶,中止循环。

如果新加入的区间与栈顶区间没有交集,弹掉栈顶,中止循环。

这一步的时间复杂度为 O(nlog n)。

对于第二步,我们对于每个位置 i 记录 fir[这个位置上的颜色]。

查询区间最小值即可。时间复杂度也为 O(nlog n)。

对于第三部,即拼合区间。我们将连续的区间存成一个序列,存储它们的区间长度。

则拼合出来的区间对应这个序列里的某个连续的子段。

使用滑动窗口即可统计题目要求的信息。时间复杂度 O(n)。

故总时间复杂度 O(nlog n)。

@accepted code@

#include<cmath>
#include<stack>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN = 1000000 + 5;
inline int abs(int x) {
return x >= 0 ? x : -x;
}
int ST[20][MAXN];
int rmq(int l, int r) {
int k = log2(r-l+1), p = (1<<k);
return min(ST[k][l], ST[k][r-p+1]);
}
struct segment{
int le, ri;
segment(int _l=0, int _r=0):le(_l), ri(_r){}
}seg[MAXN], arr[MAXN];
bool cmpl(segment a, segment b) {
return a.le < b.le;
}
bool cmpr(segment a, segment b) {
return a.ri < b.ri;
}
stack<segment>stk;
vector<int>vec[MAXN];
int mn[MAXN], mx[MAXN], f[MAXN], num[MAXN];
int main() {
int n, k; scanf("%d%d", &n, &k);
for(int i=1;i<=k;i++) mx[i] = 0, mn[i] = n + 1;
for(int i=1;i<=n;i++) {
int x; scanf("%d", &x);
mx[x] = max(mx[x], i), mn[x] = min(mn[x], i);
ST[0][i] = mn[x];
}
for(int i=1;i<=k;i++) seg[i] = segment(mn[i], mx[i]);
sort(seg + 1, seg + k + 1, cmpl);
int cnt = 0;
for(int i=k;i>=1;i--) {
segment p = seg[i];
while( !stk.empty() ) {
if( stk.top().ri <= p.ri )
arr[++cnt] = stk.top(), stk.pop();
else {
if( stk.top().le <= p.ri )
p.ri = stk.top().ri, stk.pop();
break;
}
}
stk.push(p);
}
while( !stk.empty() )
arr[++cnt] = stk.top(), stk.pop();
for(int i=1;i<=n+1;i++) f[i] = -1;
for(int i=1;i<21;i++)
for(int j=1;j+(1<<(i-1))<=n;j++)
ST[i][j] = min(ST[i-1][j], ST[i-1][j+(1<<(i-1))]);
for(int i=1;i<=cnt;i++) {
if( rmq(arr[i].le, arr[i].ri) < arr[i].le ) continue;
f[arr[i].le] = arr[i].ri;
}
long long ans1 = 0;
int ans2 = n, tot = 0;
for(int i=n;i>=2;i--) {
if( f[i] == -1 ) continue;
if( f[f[i] + 1] == -1 )
num[i] = (++tot);
else num[i] = num[f[i] + 1];
vec[num[i]].push_back(f[i] - i + 1);
}
for(int i=1;i<=tot;i++) {
ans1 += 1LL*(vec[i].size() + 1)*vec[i].size()/2;
int l = 0, s = 0;
for(int r=0;r<vec[i].size();r++) {
s = s + vec[i][r];
while( 2*s >= n ) {
ans2 = min(ans2, abs(2*s - n));
s = s - vec[i][l], l++;
}
ans2 = min(ans2, abs(2*s - n));
}
}
printf("%lld %d\n", ans1, ans2);
return 0;
}

@details@

好像……挺复杂的?其实主要是性质比较多啦。

我发现哈希做法和我这个做法在某些方面挺类似。

然后我好像多找了几个性质将不准确的算法(哈希的确无法保证正确性)转为一个准确的算法。

由于没有人写过这种做法的题解,如果这个做法有问题请务必留言告诉我。

@bzoj - 4382@ [POI2015] Podział naszyjnika的更多相关文章

  1. 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组

    [BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...

  2. BZOJ4382 : [POI2015]Podział naszyjnika

    对于每种颜色,可以发现可以切的位置被分割成了若干段独立的区域. 给每个区域一个编号,将$m$种颜色的情况当成字符串来看,如果两个切口的字符串完全匹配,那么可以在这里切两刀. 可以构造hash函数,通过 ...

  3. [BZOJ4382][POI2015]Podział naszyjnika (神奇HASH)

    [问题描述]    长度为n 的一串项链,每颗珠子是K 种颜色之一.第i 颗与第i-1,i+1 颗珠子相邻,第n 颗与第1 颗也相邻.    切两刀,把项链断成两条链.要求每种颜色的珠子只能出现在其中 ...

  4. bzoj 4386: [POI2015]Wycieczki

    bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...

  5. BZOJ 4385: [POI2015]Wilcze doły

    4385: [POI2015]Wilcze doły Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 648  Solved: 263[Submit][ ...

  6. BZOJ 4384: [POI2015]Trzy wieże

    4384: [POI2015]Trzy wieże Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 217  Solved: 61[Submit][St ...

  7. Bzoj 3747: [POI2015]Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Stat ...

  8. BZOJ 3747 POI2015 Kinoman 段树

    标题效果:有m点,每个点都有一个权值.现在我们有这个m为点的长度n该序列,寻求区间,它仅出现一次在正确的点区间内值和最大 想了很久,甚至神标题,奔说是水的问题--我醉了 枚举左点 对于每个请求留点右键 ...

  9. BZOJ 4380 [POI2015]Myjnie | DP

    链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...

随机推荐

  1. flask的基本操作

    常用的SQLAlchemy字段类型 # coding:utf-8 from flask import Flask from flask_sqlalchemy import SQLAlchemy app ...

  2. NKOJ1469 通向自由的钥匙

    P1469通向自由的钥匙   时间限制 : 10000 MS   空间限制 : 65536 KB 问题描述 通向自由的钥匙被放n个房间里,这n个房间由n-1条走廊连接.但是每个房间里都有特别 的保护魔 ...

  3. web前端学习(四)JavaScript学习笔记部分(4)-- JavaScriptDOM对象

    1.Javascript-DOM简介 1.1.HTML DOM 1.2.DOM操作HTML 1.2.1.JavaScript能够改变页面中的所有HTML元素 1.2.2.JavaScript能够改变页 ...

  4. HTML input type=file文件选择表单的汇总(二)

    1. 原生file input大小.按钮文字等UI自定义 元素input的原生样式,不是太好看: 有一种方法是这样的:让file类型的元素透明度0,覆盖在我们好看的按钮上.然后我们去点击好看的按钮,实 ...

  5. Spring_代理

    1.代理模式. 2.静态代理原理及实践. 3.动态代理原理及实践. 4.Spring AOP原理及实战. 静态代理原理及实践 package test.staticProxy; // 接口 publi ...

  6. arcgis地图窗口操作

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. 【JZOJ3636】【BOI2012】Mobile(mobile)

    Mission 著名的手机网络运营商Totalphone 修建了若干基站收发台,以用于把信号网络覆盖一条新建的高速公路.因为Totalphone 的程序员总是很马虎的,所以,基站的传功功率不能独立设置 ...

  8. 学习JDK1.8集合源码之--LinkedList

    1. LinkedList简介 LinkedList是一种可以在任何位置进行高效地插入和移除操作的有序序列,它是基于双向链表实现的.因为它实现了Deque接口,所以也是双端队列的一种实现. 2.Lin ...

  9. POJ 1845 (洛谷 :题目待添加)Sumdiv

    约数和 题目描述 给出a和b求a^b的约数和. 输入格式: 一行两个数a,b. 输出格式: 一个数表示结果对 9901 的模. Input 2 3 Output 15 SB的思路: 这是一道典型的数论 ...

  10. Function相关的小知识

      重载 相同函数名,不同参数列表的多个函数,在调用时可自动根据传入参数的不同,选择对应的函数执行.为什么使用重载:                   减轻API的名字,减轻调用者的负担.何时使用重 ...