目录:

  1. 停用词 —— stopwords
  2. 介词 —— prepositions —— part of speech
  3. Named Entity Recognition (NER)  3.1 Stanford NER
      3.2 spaCy
      3.3 NLTK
  4. 句子中单词提取(Word extraction)

1. 停用词(stopwords)

ref: Removing stop words with NLTK in Python

ref: Remove Stop Words

import nltk
# nltk.download('stopwords')
from nltk.corpus import stopwords
print(stopwords.words('english')) output:
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]

2. 介词(prepositions, part of speech)

ref: How do I remove verbs, prepositions, conjunctions etc from my text? [closed]

ref: Alphabetical list of part-of-speech tags used in the Penn Treebank Project:

>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens
['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
>>> tagged = nltk.pos_tag(tokens)
>>> tagged[0:6]
[('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'),
('Thursday', 'NNP'), ('morning', 'NN')]

3. Named Entity Recognition (NER)

ref: Introduction to Named Entity Recognition

ref: Named Entity Recognition with NLTK and SpaCy

  • Standford NER
  • spaCy
  • NLTK

3.1 Stanford NER

article = '''
Asian shares skidded on Tuesday after a rout in tech stocks put Wall Street to the sword, while a
sharp drop in oil prices and political risks in Europe pushed the dollar to 16-month highs as investors dumped
riskier assets. MSCI’s broadest index of Asia-Pacific shares outside Japan dropped 1.7 percent to a 1-1/2
week trough, with Australian shares sinking 1.6 percent. Japan’s Nikkei dived 3.1 percent led by losses in
electric machinery makers and suppliers of Apple’s iphone parts. Sterling fell to $1.286 after three straight
sessions of losses took it to the lowest since Nov.1 as there were still considerable unresolved issues with the
European Union over Brexit, British Prime Minister Theresa May said on Monday.''' import nltk
from nltk.tag import StanfordNERTagger print('NTLK Version: %s' % nltk.__version__) stanford_ner_tagger = StanfordNERTagger(
r"D:\Twitter Data\Data\NER\stanford-ner-2018-10-16\classifiers\english.muc.7class.distsim.crf.ser.gz",
r"D:\Twitter Data\Data\NER\stanford-ner-2018-10-16\stanford-ner-3.9.2.jar"
) results = stanford_ner_tagger.tag(article.split()) print('Original Sentence: %s' % (article))
for result in results:
tag_value = result[0]
tag_type = result[1]
if tag_type != 'O':
print('Type: %s, Value: %s' % (tag_type, tag_value)) output:
NTLK Version: 3.4
Original Sentence:
Asian shares skidded on Tuesday after a rout in tech stocks put Wall Street to the sword, while a
sharp drop in oil prices and political risks in Europe pushed the dollar to 16-month highs as investors dumped
riskier assets. MSCI’s broadest index of Asia-Pacific shares outside Japan dropped 1.7 percent to a 1-1/2
week trough, with Australian shares sinking 1.6 percent. Japan’s Nikkei dived 3.1 percent led by losses in
electric machinery makers and suppliers of Apple’s iphone parts. Sterling fell to $1.286 after three straight
sessions of losses took it to the lowest since Nov.1 as there were still considerable unresolved issues with the
European Union over Brexit, British Prime Minister Theresa May said on Monday.
Type: DATE, Value: Tuesday
Type: LOCATION, Value: Europe
Type: ORGANIZATION, Value: Asia-Pacific
Type: LOCATION, Value: Japan
Type: PERCENT, Value: 1.7
Type: PERCENT, Value: percent
Type: ORGANIZATION, Value: Nikkei
Type: PERCENT, Value: 3.1
Type: PERCENT, Value: percent
Type: LOCATION, Value: European
Type: LOCATION, Value: Union
Type: PERSON, Value: Theresa
Type: PERSON, Value: May

3.2 spaCy

import spacy
from spacy import displacy
from collections import Counter
import en_core_web_sm
nlp = en_core_web_sm.load()
doc = nlp(article)
for X in doc.ents:
print('Value: %s, Type: %s' % (X.text, X.label_)) output:
Value: Asian, Type: NORP
Value: Tuesday, Type: DATE
Value: Europe, Type: LOC
Value: MSCI’s, Type: ORG
Value: Asia-Pacific, Type: LOC
Value: Japan, Type: GPE
Value: 1.7 percent, Type: PERCENT
Value: 1-1/2, Type: CARDINAL
Value: Australian, Type: NORP
Value: 1.6 percent, Type: PERCENT
Value: Japan, Type: GPE
Value: 3.1 percent, Type: PERCENT
Value: Apple, Type: ORG
Value: 1.286, Type: MONEY
Value: three, Type: CARDINAL
Value: Nov.1, Type: NORP
Value: the
European Union, Type: ORG
Value: Brexit, Type: GPE
Value: British, Type: NORP
Value: Theresa May, Type: PERSON
Value: Monday, Type: DATE

标签含义:https://spacy.io/api/annotation#pos-tagging

Type Description
PERSON People, including fictional.
NORP Nationalities or religious or political groups.
FAC Buildings, airports, highways, bridges, etc.
ORG Companies, agencies, institutions, etc.
GPE Countries, cities, states.
LOC Non-GPE locations, mountain ranges, bodies of water.
PRODUCT Objects, vehicles, foods, etc. (Not services.)
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK_OF_ART Titles of books, songs, etc.
LAW Named documents made into laws.
LANGUAGE Any named language.
DATE Absolute or relative dates or periods.
TIME Times smaller than a day.
PERCENT Percentage, including ”%“.
MONEY Monetary values, including unit.
QUANTITY Measurements, as of weight or distance.
ORDINAL “first”, “second”, etc.
CARDINAL Numerals that do not fall under another type.

3.3 NLTK

import nltk
from nltk import word_tokenize, pos_tag, ne_chunk
nltk.download('words')
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
nltk.download('maxent_ne_chunker') def fn_preprocess(art):
art = nltk.word_tokenize(art)
art = nltk.pos_tag(art)
return art
art_processed = fn_preprocess(article)
print(art_processed) output:
[('Asian', 'JJ'), ('shares', 'NNS'), ('skidded', 'VBN'), ('on', 'IN'), ('Tuesday', 'NNP'), ('after', 'IN'), ('a', 'DT'), ('rout', 'NN'), ('in', 'IN'), ('tech', 'JJ'), ('stocks', 'NNS'), ('put', 'VBD'), ('Wall', 'NNP'), ('Street', 'NNP'), ('to', 'TO'), ('the', 'DT'), ('sword', 'NN'), (',', ','), ('while', 'IN'), ('a', 'DT'), ('sharp', 'JJ'), ('drop', 'NN'), ('in', 'IN'), ('oil', 'NN'), ('prices', 'NNS'), ('and', 'CC'), ('political', 'JJ'), ('risks', 'NNS'), ('in', 'IN'), ('Europe', 'NNP'), ('pushed', 'VBD'), ('the', 'DT'), ('dollar', 'NN'), ('to', 'TO'), ('16-month', 'JJ'), ('highs', 'NNS'), ('as', 'IN'), ('investors', 'NNS'), ('dumped', 'VBD'), ('riskier', 'JJR'), ('assets', 'NNS'), ('.', '.'), ('MSCI', 'NNP'), ('’', 'NNP'), ('s', 'VBD'), ('broadest', 'JJS'), ('index', 'NN'), ('of', 'IN'), ('Asia-Pacific', 'NNP'), ('shares', 'NNS'), ('outside', 'IN'), ('Japan', 'NNP'), ('dropped', 'VBD'), ('1.7', 'CD'), ('percent', 'NN'), ('to', 'TO'), ('a', 'DT'), ('1-1/2', 'JJ'), ('week', 'NN'), ('trough', 'NN'), (',', ','), ('with', 'IN'), ('Australian', 'JJ'), ('shares', 'NNS'), ('sinking', 'VBG'), ('1.6', 'CD'), ('percent', 'NN'), ('.', '.'), ('Japan', 'NNP'), ('’', 'NNP'), ('s', 'VBD'), ('Nikkei', 'NNP'), ('dived', 'VBD'), ('3.1', 'CD'), ('percent', 'NN'), ('led', 'VBN'), ('by', 'IN'), ('losses', 'NNS'), ('in', 'IN'), ('electric', 'JJ'), ('machinery', 'NN'), ('makers', 'NNS'), ('and', 'CC'), ('suppliers', 'NNS'), ('of', 'IN'), ('Apple', 'NNP'), ('’', 'NNP'), ('s', 'VBD'), ('iphone', 'NN'), ('parts', 'NNS'), ('.', '.'), ('Sterling', 'NN'), ('fell', 'VBD'), ('to', 'TO'), ('$', '$'), ('1.286', 'CD'), ('after', 'IN'), ('three', 'CD'), ('straight', 'JJ'), ('sessions', 'NNS'), ('of', 'IN'), ('losses', 'NNS'), ('took', 'VBD'), ('it', 'PRP'), ('to', 'TO'), ('the', 'DT'), ('lowest', 'JJS'), ('since', 'IN'), ('Nov.1', 'NNP'), ('as', 'IN'), ('there', 'EX'), ('were', 'VBD'), ('still', 'RB'), ('considerable', 'JJ'), ('unresolved', 'JJ'), ('issues', 'NNS'), ('with', 'IN'), ('the', 'DT'), ('European', 'NNP'), ('Union', 'NNP'), ('over', 'IN'), ('Brexit', 'NNP'), (',', ','), ('British', 'NNP'), ('Prime', 'NNP'), ('Minister', 'NNP'), ('Theresa', 'NNP'), ('May', 'NNP'), ('said', 'VBD'), ('on', 'IN'), ('Monday', 'NNP'), ('.', '.')]

  

4. 句子中单词提取(Word extraction)

ref: An introduction to Bag of Words and how to code it in Python for NLP

import re
def word_extraction(sentence):
ignore = ['a', "the", "is"]
words = re.sub("[^\w]", " ", sentence).split()
cleaned_text = [w.lower() for w in words if w not in ignore]
return cleaned_text a = "alex is. good guy."
print(word_extraction(a)) output:
['alex', 'good', 'guy']

【448】NLP, NER, PoS的更多相关文章

  1. 【数据处理】各门店POS销售导入

    --抓取西部POS数据DELETE FROM POSLSBF INSERT INTO POSLSBFselect * from [192.168.1.100].[SCMIS].DBO.possrlbf ...

  2. 论文笔记【一】Chinese NER Using Lattice LSTM

    论文:Chinese NER Using Lattice LSTM 论文链接:https://arxiv.org/abs/1805.02023 论文作者:Yue Zhang∗and Jie Yang∗ ...

  3. 【LDA】nlp

    http://pythonhosted.org/lda/getting_started.html http://radimrehurek.com/gensim/

  4. 448. Find All Numbers Disappeared in an Array【easy】

    448. Find All Numbers Disappeared in an Array[easy] Given an array of integers where 1 ≤ a[i] ≤ n (n ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  6. 【Nodejs】理想论坛帖子爬虫1.01

    用Nodejs把Python实现过的理想论坛爬虫又实现了一遍,但是怎么判断所有回调函数都结束没有好办法,目前的spiderCount==spiderFinished判断法在多页情况下还是会提前中止. ...

  7. 【BZOJ-1146】网络管理Network DFS序 + 带修主席树

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3495  Solved: 1032[Submi ...

  8. 通用js函数集锦<来源于网络> 【二】

    通用js函数集锦<来源于网络> [二] 1.数组方法集2.cookie方法集3.url方法集4.正则表达式方法集5.字符串方法集6.加密方法集7.日期方法集8.浏览器检测方法集9.json ...

  9. 【BZOJ3940】【BZOJ3942】[Usaco2015 Feb]Censoring AC自动机/KMP/hash+栈

    [BZOJ3942][Usaco2015 Feb]Censoring Description Farmer John has purchased a subscription to Good Hoov ...

随机推荐

  1. 测试MongoDB的自动分片

    MongoDB的自动分片: test库分片配置: db.shards.find(){ "_id" : "shard0000", "host" ...

  2. 业余时间折腾了个微信小程序版本的街机游戏模拟器(吾爱街机),8090后的童年回忆,欢迎大家体验

    好多年没来博客园了,有段时间想玩街机游戏,发现都需要下载安装,现在小程序这么流行,是不是可以集成到小程序里(无需下载,在线玩),出于这想法,就业余时间折腾了下,分享给大家,偶尔可以回味畅玩下. 中间遇 ...

  3. python deque的内在实现 本质上就是双向链表所以用于stack、队列非常方便

    How collections.deque works? Cosven     前言:在 Python 生态中,我们经常使用 collections.deque 来实现栈.队列这些只需要进行头尾操作的 ...

  4. Kotlin调用Java程序解析

    Kotlin跟Java是百分百兼容的,换言之,也就是它们俩是可以互操作的,也就是Java可以调Kotlin,Koltin可以调Java,所以下面来看一下在Kotlin中如何来调用Java代码: 咱们来 ...

  5. Alpha冲刺(8/10)——追光的人

    1.队友信息 队员学号 队员博客 221600219 小墨 https://www.cnblogs.com/hengyumo/ 221600240 真·大能猫 https://www.cnblogs. ...

  6. python - 手机号正则匹配

    Python 手机号正则匹配 # -*- coding:utf-8 -*- import re def is_phone(phone): phone_pat = re.compile('^(13\d| ...

  7. learning scala akka actorySystem create and close

    package com.example import akka.actor.ActorSystem import scala.util.{Failure, Success} import scala. ...

  8. Html结构标准

    < ! doctype html> 声明文档类型 <html> 根标签 <head> 头标签 <title></title> 标题标签 &l ...

  9. javascript预览本地图片

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. Fiddler如何查找登陆的可用cookie用于其他请求?方式一

    测试过程中,如果你的请求权限是通过cookie响应而不是通过token获得,那么使用如下设置: 1.进入fiddler抓取: 2.jmeter中使用cookie 直接放进去就好了,一般浏览器cooki ...