【448】NLP, NER, PoS
目录:
- 停用词 —— stopwords
- 介词 —— prepositions —— part of speech
- Named Entity Recognition (NER) 3.1 Stanford NER
3.2 spaCy
3.3 NLTK - 句子中单词提取(Word extraction)
1. 停用词(stopwords)
ref: Removing stop words with NLTK in Python
ref: Remove Stop Words
import nltk
# nltk.download('stopwords')
from nltk.corpus import stopwords
print(stopwords.words('english')) output:
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]
2. 介词(prepositions, part of speech)
ref: How do I remove verbs, prepositions, conjunctions etc from my text? [closed]
ref: Alphabetical list of part-of-speech tags used in the Penn Treebank Project:
>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens
['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
>>> tagged = nltk.pos_tag(tokens)
>>> tagged[0:6]
[('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'),
('Thursday', 'NNP'), ('morning', 'NN')]
3. Named Entity Recognition (NER)
ref: Introduction to Named Entity Recognition
ref: Named Entity Recognition with NLTK and SpaCy
- Standford NER
- spaCy
- NLTK
3.1 Stanford NER
article = '''
Asian shares skidded on Tuesday after a rout in tech stocks put Wall Street to the sword, while a
sharp drop in oil prices and political risks in Europe pushed the dollar to 16-month highs as investors dumped
riskier assets. MSCI’s broadest index of Asia-Pacific shares outside Japan dropped 1.7 percent to a 1-1/2
week trough, with Australian shares sinking 1.6 percent. Japan’s Nikkei dived 3.1 percent led by losses in
electric machinery makers and suppliers of Apple’s iphone parts. Sterling fell to $1.286 after three straight
sessions of losses took it to the lowest since Nov.1 as there were still considerable unresolved issues with the
European Union over Brexit, British Prime Minister Theresa May said on Monday.''' import nltk
from nltk.tag import StanfordNERTagger print('NTLK Version: %s' % nltk.__version__) stanford_ner_tagger = StanfordNERTagger(
r"D:\Twitter Data\Data\NER\stanford-ner-2018-10-16\classifiers\english.muc.7class.distsim.crf.ser.gz",
r"D:\Twitter Data\Data\NER\stanford-ner-2018-10-16\stanford-ner-3.9.2.jar"
) results = stanford_ner_tagger.tag(article.split()) print('Original Sentence: %s' % (article))
for result in results:
tag_value = result[0]
tag_type = result[1]
if tag_type != 'O':
print('Type: %s, Value: %s' % (tag_type, tag_value)) output:
NTLK Version: 3.4
Original Sentence:
Asian shares skidded on Tuesday after a rout in tech stocks put Wall Street to the sword, while a
sharp drop in oil prices and political risks in Europe pushed the dollar to 16-month highs as investors dumped
riskier assets. MSCI’s broadest index of Asia-Pacific shares outside Japan dropped 1.7 percent to a 1-1/2
week trough, with Australian shares sinking 1.6 percent. Japan’s Nikkei dived 3.1 percent led by losses in
electric machinery makers and suppliers of Apple’s iphone parts. Sterling fell to $1.286 after three straight
sessions of losses took it to the lowest since Nov.1 as there were still considerable unresolved issues with the
European Union over Brexit, British Prime Minister Theresa May said on Monday.
Type: DATE, Value: Tuesday
Type: LOCATION, Value: Europe
Type: ORGANIZATION, Value: Asia-Pacific
Type: LOCATION, Value: Japan
Type: PERCENT, Value: 1.7
Type: PERCENT, Value: percent
Type: ORGANIZATION, Value: Nikkei
Type: PERCENT, Value: 3.1
Type: PERCENT, Value: percent
Type: LOCATION, Value: European
Type: LOCATION, Value: Union
Type: PERSON, Value: Theresa
Type: PERSON, Value: May
3.2 spaCy
import spacy
from spacy import displacy
from collections import Counter
import en_core_web_sm
nlp = en_core_web_sm.load()
doc = nlp(article)
for X in doc.ents:
print('Value: %s, Type: %s' % (X.text, X.label_)) output:
Value: Asian, Type: NORP
Value: Tuesday, Type: DATE
Value: Europe, Type: LOC
Value: MSCI’s, Type: ORG
Value: Asia-Pacific, Type: LOC
Value: Japan, Type: GPE
Value: 1.7 percent, Type: PERCENT
Value: 1-1/2, Type: CARDINAL
Value: Australian, Type: NORP
Value: 1.6 percent, Type: PERCENT
Value: Japan, Type: GPE
Value: 3.1 percent, Type: PERCENT
Value: Apple, Type: ORG
Value: 1.286, Type: MONEY
Value: three, Type: CARDINAL
Value: Nov.1, Type: NORP
Value: the
European Union, Type: ORG
Value: Brexit, Type: GPE
Value: British, Type: NORP
Value: Theresa May, Type: PERSON
Value: Monday, Type: DATE
标签含义:https://spacy.io/api/annotation#pos-tagging
| Type | Description |
|---|---|
PERSON |
People, including fictional. |
NORP |
Nationalities or religious or political groups. |
FAC |
Buildings, airports, highways, bridges, etc. |
ORG |
Companies, agencies, institutions, etc. |
GPE |
Countries, cities, states. |
LOC |
Non-GPE locations, mountain ranges, bodies of water. |
PRODUCT |
Objects, vehicles, foods, etc. (Not services.) |
EVENT |
Named hurricanes, battles, wars, sports events, etc. |
WORK_OF_ART |
Titles of books, songs, etc. |
LAW |
Named documents made into laws. |
LANGUAGE |
Any named language. |
DATE |
Absolute or relative dates or periods. |
TIME |
Times smaller than a day. |
PERCENT |
Percentage, including ”%“. |
MONEY |
Monetary values, including unit. |
QUANTITY |
Measurements, as of weight or distance. |
ORDINAL |
“first”, “second”, etc. |
CARDINAL |
Numerals that do not fall under another type. |
3.3 NLTK
import nltk
from nltk import word_tokenize, pos_tag, ne_chunk
nltk.download('words')
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
nltk.download('maxent_ne_chunker') def fn_preprocess(art):
art = nltk.word_tokenize(art)
art = nltk.pos_tag(art)
return art
art_processed = fn_preprocess(article)
print(art_processed) output:
[('Asian', 'JJ'), ('shares', 'NNS'), ('skidded', 'VBN'), ('on', 'IN'), ('Tuesday', 'NNP'), ('after', 'IN'), ('a', 'DT'), ('rout', 'NN'), ('in', 'IN'), ('tech', 'JJ'), ('stocks', 'NNS'), ('put', 'VBD'), ('Wall', 'NNP'), ('Street', 'NNP'), ('to', 'TO'), ('the', 'DT'), ('sword', 'NN'), (',', ','), ('while', 'IN'), ('a', 'DT'), ('sharp', 'JJ'), ('drop', 'NN'), ('in', 'IN'), ('oil', 'NN'), ('prices', 'NNS'), ('and', 'CC'), ('political', 'JJ'), ('risks', 'NNS'), ('in', 'IN'), ('Europe', 'NNP'), ('pushed', 'VBD'), ('the', 'DT'), ('dollar', 'NN'), ('to', 'TO'), ('16-month', 'JJ'), ('highs', 'NNS'), ('as', 'IN'), ('investors', 'NNS'), ('dumped', 'VBD'), ('riskier', 'JJR'), ('assets', 'NNS'), ('.', '.'), ('MSCI', 'NNP'), ('’', 'NNP'), ('s', 'VBD'), ('broadest', 'JJS'), ('index', 'NN'), ('of', 'IN'), ('Asia-Pacific', 'NNP'), ('shares', 'NNS'), ('outside', 'IN'), ('Japan', 'NNP'), ('dropped', 'VBD'), ('1.7', 'CD'), ('percent', 'NN'), ('to', 'TO'), ('a', 'DT'), ('1-1/2', 'JJ'), ('week', 'NN'), ('trough', 'NN'), (',', ','), ('with', 'IN'), ('Australian', 'JJ'), ('shares', 'NNS'), ('sinking', 'VBG'), ('1.6', 'CD'), ('percent', 'NN'), ('.', '.'), ('Japan', 'NNP'), ('’', 'NNP'), ('s', 'VBD'), ('Nikkei', 'NNP'), ('dived', 'VBD'), ('3.1', 'CD'), ('percent', 'NN'), ('led', 'VBN'), ('by', 'IN'), ('losses', 'NNS'), ('in', 'IN'), ('electric', 'JJ'), ('machinery', 'NN'), ('makers', 'NNS'), ('and', 'CC'), ('suppliers', 'NNS'), ('of', 'IN'), ('Apple', 'NNP'), ('’', 'NNP'), ('s', 'VBD'), ('iphone', 'NN'), ('parts', 'NNS'), ('.', '.'), ('Sterling', 'NN'), ('fell', 'VBD'), ('to', 'TO'), ('$', '$'), ('1.286', 'CD'), ('after', 'IN'), ('three', 'CD'), ('straight', 'JJ'), ('sessions', 'NNS'), ('of', 'IN'), ('losses', 'NNS'), ('took', 'VBD'), ('it', 'PRP'), ('to', 'TO'), ('the', 'DT'), ('lowest', 'JJS'), ('since', 'IN'), ('Nov.1', 'NNP'), ('as', 'IN'), ('there', 'EX'), ('were', 'VBD'), ('still', 'RB'), ('considerable', 'JJ'), ('unresolved', 'JJ'), ('issues', 'NNS'), ('with', 'IN'), ('the', 'DT'), ('European', 'NNP'), ('Union', 'NNP'), ('over', 'IN'), ('Brexit', 'NNP'), (',', ','), ('British', 'NNP'), ('Prime', 'NNP'), ('Minister', 'NNP'), ('Theresa', 'NNP'), ('May', 'NNP'), ('said', 'VBD'), ('on', 'IN'), ('Monday', 'NNP'), ('.', '.')]
4. 句子中单词提取(Word extraction)
ref: An introduction to Bag of Words and how to code it in Python for NLP
import re
def word_extraction(sentence):
ignore = ['a', "the", "is"]
words = re.sub("[^\w]", " ", sentence).split()
cleaned_text = [w.lower() for w in words if w not in ignore]
return cleaned_text a = "alex is. good guy."
print(word_extraction(a)) output:
['alex', 'good', 'guy']
【448】NLP, NER, PoS的更多相关文章
- 【数据处理】各门店POS销售导入
--抓取西部POS数据DELETE FROM POSLSBF INSERT INTO POSLSBFselect * from [192.168.1.100].[SCMIS].DBO.possrlbf ...
- 论文笔记【一】Chinese NER Using Lattice LSTM
论文:Chinese NER Using Lattice LSTM 论文链接:https://arxiv.org/abs/1805.02023 论文作者:Yue Zhang∗and Jie Yang∗ ...
- 【LDA】nlp
http://pythonhosted.org/lda/getting_started.html http://radimrehurek.com/gensim/
- 448. Find All Numbers Disappeared in an Array【easy】
448. Find All Numbers Disappeared in an Array[easy] Given an array of integers where 1 ≤ a[i] ≤ n (n ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 【Nodejs】理想论坛帖子爬虫1.01
用Nodejs把Python实现过的理想论坛爬虫又实现了一遍,但是怎么判断所有回调函数都结束没有好办法,目前的spiderCount==spiderFinished判断法在多页情况下还是会提前中止. ...
- 【BZOJ-1146】网络管理Network DFS序 + 带修主席树
1146: [CTSC2008]网络管理Network Time Limit: 50 Sec Memory Limit: 162 MBSubmit: 3495 Solved: 1032[Submi ...
- 通用js函数集锦<来源于网络> 【二】
通用js函数集锦<来源于网络> [二] 1.数组方法集2.cookie方法集3.url方法集4.正则表达式方法集5.字符串方法集6.加密方法集7.日期方法集8.浏览器检测方法集9.json ...
- 【BZOJ3940】【BZOJ3942】[Usaco2015 Feb]Censoring AC自动机/KMP/hash+栈
[BZOJ3942][Usaco2015 Feb]Censoring Description Farmer John has purchased a subscription to Good Hoov ...
随机推荐
- 如何更改scratch3.0的文字
首先,我们来看以下的图,我们需要更改scratch3.0的文字,例如文件,新作品,从电脑上传等文字. 打开源码,目录src/compents/menu-bar/menu-bar.jsx 大家会发现,所 ...
- C# CustomValidator
当各种验证控件的验证类型都不能满足需要时可以使用CustomValidator验证控件,通过自定义验证函数来验证.直接看例子 <%@ Page Language="C#" A ...
- Pycharm 切换Git 远程分支
1.git 仓库新建远程分支以后,pycharm 本地没有办法查看到对应的分支,需要切换到本地代码的git所在的目录执行下"git remote update origin --prune” ...
- GitLab CI runner can't connect to tcp://localhost:2375 in kubernetes
报错的.gitlab-ci.yml配置如下 image: docker:latest services: - docker:dind variables: DOCKER_HOST: tcp://loc ...
- Docker部署nodejs应用并使用PM2作为守护进程
环境:centos7.6 Docker version 18.06.0-ce mkdir /data cd /data 拉取最新keymetrics/pm2:latest-alpine镜像 docke ...
- toB创业中的5个行动原则- SaaS创业路线图
https://www.iyiou.com/p/84471.html 1.硬骨头原则 很多创业者急于求成,这做不好toB创业. 举例来说,产品价值阶段如果发现效果不明显,硬要推进到营销阶段在销售上想办 ...
- 题解 UVa11076
题目大意 多组数据,每组数据给出 \(n\) 个一位数,求出这些一位数组成的所有不同整数的和. 分析 考虑一个数对某一位的贡献,为这个数乘以其他数的全排列数,问题转化为可重复元素的全排列. 引理 \( ...
- 002——keil-Error: L6915E: Library reports error: __use_no_semihosting was requested解决
..\OBJ\KEY.axf: Error: L6915E: Library reports error: __use_no_semihosting was requested, but _ttywr ...
- WinDbg常用命令系列---.write_cmd_hist (写命令历史记录)
.write_cmd_hist 简介 .write_cmd_hist命令将调试器命令窗口的整个历史记录写入文件. 使用形式 .write_cmd_hist Filename 参数 Filename指定 ...
- WinDbg扩展
WinDbg的扩展,也可以叫插件.它用于实现针对特定调试目标的调试功能,用于扩展某一方面的调试功能.扩展的实现是通过扩展模块(DLL)实现的.Windbg本身已经包含了很多扩展命令,这些扩展为这Win ...