[LeetCode] 377. Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.
这道题是组合之和系列的第四道,博主开始想当然的以为还是用递归来解,结果写出来发现 TLE 了,的确 OJ 给了一个 test case 为 [4,1,2] 32,这个结果是 39882198,用递归需要好几秒的运算时间,实在是不高效,估计这也是为啥只让返回一个总和,而不是返回所有情况,不然机子就爆了。而这道题的真正解法应该是用 DP 来做,解题思想有点像之前爬梯子的那道题 Climbing Stairs,这里需要一个一维数组 dp,其中 dp[i] 表示目标数为i的解的个数,然后从1遍历到 target,对于每一个数i,遍历 nums 数组,如果 i>=x, dp[i] += dp[i - x]。这个也很好理解,比如说对于 [1,2,3] 4,这个例子,当计算 dp[3] 的时候,3可以拆分为 1+x,而x即为 dp[2],3也可以拆分为 2+x,此时x为 dp[1],3同样可以拆为 3+x,此时x为 dp[0],把所有的情况加起来就是组成3的所有情况了,参见代码如下:
解法一:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + );
dp[] = ;
for (int i = ; i <= target; ++i) {
for (auto a : nums) {
if (i >= a) dp[i] += dp[i - a];
}
}
return dp.back();
}
};
如果 target 远大于 nums 数组的个数的话,上面的算法可以做适当的优化,先给 nums 数组排个序,然后从1遍历到 target,对于i小于数组中的数字x时,直接 break 掉,因为后面的数更大,其余地方不变,参见代码如下:
解法二:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + );
dp[] = ;
sort(nums.begin(), nums.end());
for (int i = ; i <= target; ++i) {
for (auto a : nums) {
if (i < a) break;
dp[i] += dp[i - a];
}
}
return dp.back();
}
};
我们也可以使用递归+记忆数组的形式,不过这里的记忆数组用的是一个 HashMap。在递归函数中,首先判断若 target 小于0,直接返回0,若 target 等于0,则返回1。若当前 target 已经在 memo 中存在了,直接返回 memo 中的值。然后遍历 nums 中的所有数字,对每个数字都调用递归,不过此时的 target 要换成 target-nums[i],然后将返回值累加到结果 res 中即可,参见代码如下:
解法三:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
unordered_map<int, int> memo;
return helper(nums, target, memo);
}
int helper(vector<int>& nums, int target, unordered_map<int, int>& memo) {
if (target < ) return ;
if (target == ) return ;
if (memo.count(target)) return memo[target];
int res = , n = nums.size();
for (int i = ; i < n; ++i) {
res += helper(nums, target - nums[i], memo);
}
return memo[target] = res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/377
类似题目:
参考资料:
https://leetcode.com/problems/combination-sum-iv/
https://leetcode.com/problems/combination-sum-iv/discuss/85079/My-3ms-Java-DP-solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 377. Combination Sum IV 组合之和之四的更多相关文章
- [LeetCode] 377. Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- 377 Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] 216. Combination Sum III 组合之和 III
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
- [leetcode]40. Combination Sum II组合之和之二
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 40. Combination Sum II 组合之和 II
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 40. Combination Sum II 组合之和之二
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- Leetcode 377. Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] Combination Sum III 组合之和之三
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
随机推荐
- python-7-数据结构与类型转换
前言 python除了前面所说的基础类型,我们这里也需要讲解下数据结构,数据结构里面存放的是基础类型,如数字等同时也可以嵌套. 不可变数据(3 个):Number(数字).String(字符串).Tu ...
- mysql派生查询必须有别名问题记录
最近在做mysql sql兼容,原来是oracle的sql都要保证在mysql数据库运行 业务场景:原来是一个带有子查询的sql,在oracle是可以正常运行的,迁到mysql就发现报错了,报错信息如 ...
- 五、原子操作(CAS)
原子操作(CAS) 一.CAS(Compare And Set) Compare And Set(或Compare And Swap),CAS是解决多线程并行情况下使用锁造成性能损耗的一种机制,C ...
- Kubernetes Secret(机密存储)
Kubernetes Secret(机密存储) 官方文档:https://kubernetes.io/docs/concepts/configuration/secret/ 加密数据并存放Etcd中, ...
- DVWA-文件包含学习笔记
DVWA-文件包含学习笔记 一.文件包含与漏洞 文件包含: 开发人员将相同的函数写入单独的文件中,需要使用某个函数时直接调用此文件,无需再次编写,这种文件调用的过程称文件包含. 文件包含漏洞: 开发人 ...
- Golang Testing单元测试指南
基础 可以通过 go test -h 查看帮助信息. 其基本形式是: go test [build/test flags] [packages] [build/test flags & tes ...
- Java向服务器上传图片
在比较绚丽多彩的网站或者业务逻辑比较丰富的程序设计过程中,图片的相关操作时必不少的,尤其时图片的上传.还没有彻底摆脱纸质办公可能需要将纸质的文件备份上传,网站的建设可能需要上传用户头像.图片描述等等, ...
- iconfont采坑
1. iconfont采坑 1.1. 前言 使用iconfont过程中踩过坑特此记录 不知道iconfont的这里也简单介绍一笔,阿里开放的一个图标素材库,用来快速找图标下载使用图标 iconfont ...
- SimpleTagSupport 获取request、session
开发jsp系统时,我们经常会用到tag来写java的逻辑代码,一般会继承两个类,一个是SimpleTagSupport,另一个是TagSupport,由于TagSupport书写配置比较复杂(我个人才 ...
- vue定时器+弹框 跳到登陆页面
1.做一个请求拦截,并弹框提示几秒后,跳转到登陆首页或是点击确定之后直接跳转拦截用了this.$axios.interceptors.response页面上的弹框组件用了vux的组件vux地址:htt ...