[LeetCode] 377. Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.
这道题是组合之和系列的第四道,博主开始想当然的以为还是用递归来解,结果写出来发现 TLE 了,的确 OJ 给了一个 test case 为 [4,1,2] 32,这个结果是 39882198,用递归需要好几秒的运算时间,实在是不高效,估计这也是为啥只让返回一个总和,而不是返回所有情况,不然机子就爆了。而这道题的真正解法应该是用 DP 来做,解题思想有点像之前爬梯子的那道题 Climbing Stairs,这里需要一个一维数组 dp,其中 dp[i] 表示目标数为i的解的个数,然后从1遍历到 target,对于每一个数i,遍历 nums 数组,如果 i>=x, dp[i] += dp[i - x]。这个也很好理解,比如说对于 [1,2,3] 4,这个例子,当计算 dp[3] 的时候,3可以拆分为 1+x,而x即为 dp[2],3也可以拆分为 2+x,此时x为 dp[1],3同样可以拆为 3+x,此时x为 dp[0],把所有的情况加起来就是组成3的所有情况了,参见代码如下:
解法一:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + );
dp[] = ;
for (int i = ; i <= target; ++i) {
for (auto a : nums) {
if (i >= a) dp[i] += dp[i - a];
}
}
return dp.back();
}
};
如果 target 远大于 nums 数组的个数的话,上面的算法可以做适当的优化,先给 nums 数组排个序,然后从1遍历到 target,对于i小于数组中的数字x时,直接 break 掉,因为后面的数更大,其余地方不变,参见代码如下:
解法二:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + );
dp[] = ;
sort(nums.begin(), nums.end());
for (int i = ; i <= target; ++i) {
for (auto a : nums) {
if (i < a) break;
dp[i] += dp[i - a];
}
}
return dp.back();
}
};
我们也可以使用递归+记忆数组的形式,不过这里的记忆数组用的是一个 HashMap。在递归函数中,首先判断若 target 小于0,直接返回0,若 target 等于0,则返回1。若当前 target 已经在 memo 中存在了,直接返回 memo 中的值。然后遍历 nums 中的所有数字,对每个数字都调用递归,不过此时的 target 要换成 target-nums[i],然后将返回值累加到结果 res 中即可,参见代码如下:
解法三:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
unordered_map<int, int> memo;
return helper(nums, target, memo);
}
int helper(vector<int>& nums, int target, unordered_map<int, int>& memo) {
if (target < ) return ;
if (target == ) return ;
if (memo.count(target)) return memo[target];
int res = , n = nums.size();
for (int i = ; i < n; ++i) {
res += helper(nums, target - nums[i], memo);
}
return memo[target] = res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/377
类似题目:
参考资料:
https://leetcode.com/problems/combination-sum-iv/
https://leetcode.com/problems/combination-sum-iv/discuss/85079/My-3ms-Java-DP-solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 377. Combination Sum IV 组合之和之四的更多相关文章
- [LeetCode] 377. Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- 377 Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] 216. Combination Sum III 组合之和 III
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
- [leetcode]40. Combination Sum II组合之和之二
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 40. Combination Sum II 组合之和 II
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 40. Combination Sum II 组合之和之二
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- Leetcode 377. Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] Combination Sum III 组合之和之三
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
随机推荐
- LeetCode 151:给定一个字符串,逐个翻转字符串中的每个单词 Reverse Words in a String
公众号:爱写bug(ID:icodebugs) 翻转字符串里的单词 Given an input string, reverse the string word by word. 示例 1: 输入: ...
- 第二十二节:Asp.Net Core中使用托管服务实现后台任务
1. 说明 BackgroundService 是用于实现长时间运行的 IHostedService 的基类,使用程序集:Microsoft.Extensions.Hosting. 2. 实现方式 继 ...
- Visual Studio 2019 (VS2019)正式版安装 VisualSVN Server 插件
VS2019 正式版最近刚刚推出来,目前 Ankhsvn 还不支持,它最高只支持 VS2017,全网搜索了一下,也没有找到.在 Stackoverflow 上看了一下,找到这篇问答: 自己按照这种方法 ...
- Spring Cloud Ribbon客户端负载均衡(四)
序言 Ribbon 是一个客户端负载均衡器(Nginx 为服务端负载均衡),它赋予了应用一些支配 HTTP 与 TCP 行为的能力,可以得知,这里的客户端负载均衡也是进程内负载均衡的一种.它在 Spr ...
- dubbo入门学习
官方网址:http://dubbo.apache.org/zh-cn/index.html 学习可以参考官网中文文档:http://dubbo.apache.org/zh-cn/docs/user/q ...
- ASP.NET Core 进程外(out-of-process)托管
ASP.NET Core 进程外(out-of-process)托管 在本节中,我们将讨论 ASP.NET Core 中的Out Of Process Hosting. ASP.NET Core 进程 ...
- NumPy 文件数据读写
写数据 NumPy 数组可以使用 np.save 方法保存到本地磁盘中,默认扩展名是 .npy,并且是未压缩的二进制格式. import numpy as np a = np.array([[0, 1 ...
- ASP.NET Core系列:中间件
1. 概述 ASP.NET Core中的中间件是嵌入到应用管道中用于处理请求和响应的一段代码. 2. 使用 IApplicationBuilder 创建中间件管道 2.1 匿名函数 使用Run, Ma ...
- jQuery AJAX方法详谈
AJAX是与服务器交换数据并更新部分网页的技术,而无需重新加载整个页面. 下表列出了所有jQuery AJAX方法: 方法 描述 $.ajax() 执行异步AJAX请求 $.ajaxPrefilter ...
- 从webkit内核简单看css样式和css规则优先级(权重)
目录 webkit中样式相关类及类间关系 样式规则匹配 权重(优先级)计算 权重相同时的覆盖原则 webkit中样式相关类及类间关系 资料来源: <webkit技术内幕> 结构相关类: 1 ...