Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.

这道题是组合之和系列的第四道,博主开始想当然的以为还是用递归来解,结果写出来发现 TLE 了,的确 OJ 给了一个 test case 为 [4,1,2] 32,这个结果是 39882198,用递归需要好几秒的运算时间,实在是不高效,估计这也是为啥只让返回一个总和,而不是返回所有情况,不然机子就爆了。而这道题的真正解法应该是用 DP 来做,解题思想有点像之前爬梯子的那道题 Climbing Stairs,这里需要一个一维数组 dp,其中 dp[i] 表示目标数为i的解的个数,然后从1遍历到 target,对于每一个数i,遍历 nums 数组,如果 i>=x, dp[i] += dp[i - x]。这个也很好理解,比如说对于 [1,2,3] 4,这个例子,当计算 dp[3] 的时候,3可以拆分为 1+x,而x即为 dp[2],3也可以拆分为 2+x,此时x为 dp[1],3同样可以拆为 3+x,此时x为 dp[0],把所有的情况加起来就是组成3的所有情况了,参见代码如下:

解法一:

class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + );
dp[] = ;
for (int i = ; i <= target; ++i) {
for (auto a : nums) {
if (i >= a) dp[i] += dp[i - a];
}
}
return dp.back();
}
};

如果 target 远大于 nums 数组的个数的话,上面的算法可以做适当的优化,先给 nums 数组排个序,然后从1遍历到 target,对于i小于数组中的数字x时,直接 break 掉,因为后面的数更大,其余地方不变,参见代码如下:

解法二:

class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + );
dp[] = ;
sort(nums.begin(), nums.end());
for (int i = ; i <= target; ++i) {
for (auto a : nums) {
if (i < a) break;
dp[i] += dp[i - a];
}
}
return dp.back();
}
};

我们也可以使用递归+记忆数组的形式,不过这里的记忆数组用的是一个 HashMap。在递归函数中,首先判断若 target 小于0,直接返回0,若 target 等于0,则返回1。若当前 target 已经在 memo 中存在了,直接返回 memo 中的值。然后遍历 nums 中的所有数字,对每个数字都调用递归,不过此时的 target 要换成 target-nums[i],然后将返回值累加到结果 res 中即可,参见代码如下:

解法三:

class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
unordered_map<int, int> memo;
return helper(nums, target, memo);
}
int helper(vector<int>& nums, int target, unordered_map<int, int>& memo) {
if (target < ) return ;
if (target == ) return ;
if (memo.count(target)) return memo[target];
int res = , n = nums.size();
for (int i = ; i < n; ++i) {
res += helper(nums, target - nums[i], memo);
}
return memo[target] = res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/377

类似题目:

Combination Sum

Combination Sum II

Combination Sum III

参考资料:

https://leetcode.com/problems/combination-sum-iv/

https://leetcode.com/problems/combination-sum-iv/discuss/85079/My-3ms-Java-DP-solution

https://leetcode.com/problems/combination-sum-iv/discuss/85036/1ms-Java-DP-Solution-with-Detailed-Explanation

https://leetcode.com/problems/combination-sum-iv/discuss/85120/C%2B%2B-template-for-ALL-Combination-Problem-Set

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 377. Combination Sum IV 组合之和之四的更多相关文章

  1. [LeetCode] 377. Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  2. [LeetCode] Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  3. 377 Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  4. [LeetCode] 216. Combination Sum III 组合之和 III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  5. [leetcode]40. Combination Sum II组合之和之二

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  6. [LeetCode] 40. Combination Sum II 组合之和 II

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  7. [LeetCode] 40. Combination Sum II 组合之和之二

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  8. Leetcode 377. Combination Sum IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  9. [LeetCode] Combination Sum III 组合之和之三

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

随机推荐

  1. python-7-数据结构与类型转换

    前言 python除了前面所说的基础类型,我们这里也需要讲解下数据结构,数据结构里面存放的是基础类型,如数字等同时也可以嵌套. 不可变数据(3 个):Number(数字).String(字符串).Tu ...

  2. mysql派生查询必须有别名问题记录

    最近在做mysql sql兼容,原来是oracle的sql都要保证在mysql数据库运行 业务场景:原来是一个带有子查询的sql,在oracle是可以正常运行的,迁到mysql就发现报错了,报错信息如 ...

  3. 五、原子操作(CAS)

    原子操作(CAS) 一.CAS(Compare And Set) ​ Compare And Set(或Compare And Swap),CAS是解决多线程并行情况下使用锁造成性能损耗的一种机制,C ...

  4. Kubernetes Secret(机密存储)

    Kubernetes Secret(机密存储) 官方文档:https://kubernetes.io/docs/concepts/configuration/secret/ 加密数据并存放Etcd中, ...

  5. DVWA-文件包含学习笔记

    DVWA-文件包含学习笔记 一.文件包含与漏洞 文件包含: 开发人员将相同的函数写入单独的文件中,需要使用某个函数时直接调用此文件,无需再次编写,这种文件调用的过程称文件包含. 文件包含漏洞: 开发人 ...

  6. Golang Testing单元测试指南

    基础 可以通过 go test -h 查看帮助信息. 其基本形式是: go test [build/test flags] [packages] [build/test flags & tes ...

  7. Java向服务器上传图片

    在比较绚丽多彩的网站或者业务逻辑比较丰富的程序设计过程中,图片的相关操作时必不少的,尤其时图片的上传.还没有彻底摆脱纸质办公可能需要将纸质的文件备份上传,网站的建设可能需要上传用户头像.图片描述等等, ...

  8. iconfont采坑

    1. iconfont采坑 1.1. 前言 使用iconfont过程中踩过坑特此记录 不知道iconfont的这里也简单介绍一笔,阿里开放的一个图标素材库,用来快速找图标下载使用图标 iconfont ...

  9. SimpleTagSupport 获取request、session

    开发jsp系统时,我们经常会用到tag来写java的逻辑代码,一般会继承两个类,一个是SimpleTagSupport,另一个是TagSupport,由于TagSupport书写配置比较复杂(我个人才 ...

  10. vue定时器+弹框 跳到登陆页面

    1.做一个请求拦截,并弹框提示几秒后,跳转到登陆首页或是点击确定之后直接跳转拦截用了this.$axios.interceptors.response页面上的弹框组件用了vux的组件vux地址:htt ...