ddt 是第三方模块,需安装, pip install ddt

DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据)

通常情况下,data中的数据按照一个参数传递给测试用例,如果data中含有多个数据,以元组,列表,字典等数据,需要自行在脚本中对数据进行分解或者使用unpack分解数据。

@data(a,b)

那么a和b各运行一次用例

@data([a,d],[c,d])

如果没有@unpack,那么[a,b]当成一个参数传入用例运行

如果有@unpack,那么[a,b]被分解开,按照用例中的两个参数传递

具体看下面的例子:

import unittest
from ddt import ddt,data,unpack @ddt
class MyTesting(unittest.TestCase):
def setUp(self):
print('this is the setUp')
@data([1,2,3])
def test_1(self,value):
print(value) @data([3,2,1],[5,3,2],[10,4,6])
@unpack
def test_minus(self,a,b,expected):
actual = int(a) - int(b)
expected = int(expected)
self.assertEqual(actual, expected) @data([2,3],[4,5])
def test_compare(self,a,b):
self.assertEqual(a,b) def tearDown(self):
print('this is tearDown') if __name__ == '__main__':
unittest.main(verbosity=2)

结果分析:

1. test_1的测试结果是ok的, 因为 [1,2,3] 作为一个整体传给value,所有value 打印的值是[1,2,3]

test_1_1__1__2__3_ (__main__.MyTesting) ... ok
test_compare_1__2__3_ (__main__.MyTesting) ... ERROR
[1, 2, 3]

2. test_minus的测试结果也是ok的,由于在@data(...)下加了@unpack, 代表会把数据分解,得到3组测试数据,分别为:

1.[3,2,1]
2.[5,3,2]
3.[10,4,6]
test_minus_1__3__2__1_ (__main__.MyTesting) ... ok
test_minus_2__5__3__2_ (__main__.MyTesting) ... ok
test_minus_3__10__4__6_ (__main__.MyTesting) ... ok

3. test_compare的测试结果是fail的,由于没有加@unpack, 虽然还是会被理解成2组测试数据,但是[2,3]作为一个整体被传给了a, 因为b就没有值传入了,所以一执行后报了  TypeError: test_compare() missing 1 required positional argument: 'b'  这句错。

test_compare_1__2__3_ (__main__.MyTesting) ... ERROR
test_compare_2__4__5_ (__main__.MyTesting) ... ERROR
this is the setUp
ERROR: test_compare_1__2__3_ (__main__.MyTesting)
this is tearDown
----------------------------------------------------------------------
Traceback (most recent call last):
File "D:\python\lib\site-packages\ddt.py", line 139, in wrapper
return func(self, *args, **kwargs)
TypeError: test_compare() missing 1 required positional argument: 'b' ======================================================================
ERROR: test_compare_2__4__5_ (__main__.MyTesting)
----------------------------------------------------------------------
Traceback (most recent call last):
File "D:\python\lib\site-packages\ddt.py", line 139, in wrapper
return func(self, *args, **kwargs)
TypeError: test_compare() missing 1 required positional argument: 'b'

@data()里的数据组可以为元祖,list,字典

@ddt
class MyTest(unittest.TestCase): @data((8, 6), (4, 0), (15, 6))
@unpack
def test_tuples(self, first, second):
self.assertTrue(first > second) @data([30, 29], [40, 30], [5, 3])
@unpack
def test_list(self, first, second):
self.assertTrue(first > second) @data({'first': 1, 'second': 3, 'third': 5},
{'first': 4, 'second': 7, 'third': 8})
@unpack
def test_dicts(self, first, second, third):
self.assertTrue(first < second < third) if __name__ == '__main__':
unittest.main(verbosity=2)
def get_Csv(filename):
rows = []
with open(filename,encoding='utf-8') as f:
readers = csv.reader(f)
for row in readers:
rows.append(row)
return rows @ddt
class MyTest(unittest.TestCase): @data(*get_Csv('test_csv.csv'))
@unpack
def test_data_csv(self,v1,v2,v3):
print(v1)
print(v2)
print(v3)

以上就是ddt 的学习总结,ddt 还有file_data(可以从json或者yaml中获取测试数据)的驱动方式,下篇继续啦。

python ddt 实现数据驱动一的更多相关文章

  1. python ddt 实现数据驱动

    ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...

  2. python ddt实现数据驱动

    首先安装ddt模块,命令:pip install ddt 通常情况下,data中的数据按照一个参数传递给测试用例,如果data中含有多个数据,以元组,列表,字典等数据,需要自行在脚本中对数据进行分解或 ...

  3. Python Selenium 之数据驱动测试

    数据驱动模式的测试好处相比普通模式的测试就显而易见了吧!使用数据驱动的模式,可以根据业务分解测试数据,只需定义变量,使用外部或者自定义的数据使其参数化,从而避免了使用之前测试脚本中固定的数据.可以将测 ...

  4. python DDT读取excel测试数据

    转自:http://www.cnblogs.com/nuonuozhou/p/8645129.html ddt   结合单元测试一起用 ddt(data.driven.test):数据驱动测试 由外部 ...

  5. Python Selenium 之数据驱动测试的实现

    数据驱动模式的测试好处相比普通模式的测试就显而易见了吧!使用数据驱动的模式,可以根据业务分解测试数据,只需定义变量,使用外部或者自定义的数据使其参数化,从而避免了使用之前测试脚本中固定的数据.可以将测 ...

  6. python ddt数据驱动(简化重复代码)

    在接口自动化测试中,往往一个接口的用例需要考虑 正确的.错误的.异常的.边界值等诸多情况,然后你需要写很多个同样代码,参数不同的用例.如果测试接口很多,不但需要写大量的代码,测试数据和代码柔合在一起, ...

  7. Selenium2+python自动化之数据驱动(ddt)

    环境准备 1.安装ddt模块,打开cmd输入pip install ddt在线安装 数据驱动原理 1.测试数据为多个字典的list类型 2.测试类前加修饰@ddt.ddt 3.case前加修饰@ddt ...

  8. python接口自动化测试 - 数据驱动DDT模块的简单使用

    DDT简单介绍 名称:Data-Driven Tests,数据驱动测试 作用:由外部数据集合来驱动测试用例的执行 核心的思想:数据和测试代码分离 应用场景:一组外部数据来执行相同的操作 优点:当测试数 ...

  9. python接口自动化:requests+ddt+htmltestrunner数据驱动框架

    该框架分为四个包:xc_datas.xc_driven.xc_report.xc_tools. xc_datas:存放数据,xc_driven:存放执行程序,xc_report:存放生成的报告,xc_ ...

随机推荐

  1. VC++生成不同的随机数

    其用法是先调用srand函数,如 srand( (unsigned)time( NULL ) ) 这样可以使得每次产生的随机数序列不同.假如计算伪随机序列的初始数值(称为种子)相同,则计算出来的伪随机 ...

  2. win7 默认程序设置

    1. . 2. 3. 4. 双击某个程序-->选择浏览 目标程序 .即可完成

  3. 如何将Ubuntu左边的面板放到底部

    直入主题,有些人不喜欢ubuntu默认的面板在左边(笔者就是~囧~),我还是喜欢将面板放入到桌面的底部,这样更符合自己的使用习惯,但是ubuntu默认是不支持的,需要通过配置工具来配置. 这个时候我们 ...

  4. 题目1099:后缀子串排序(qsort函数自定义cmp函数)

    题目链接:http://ac.jobdu.com/problem.php?pid=1099 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...

  5. Mysql 的事务隔离级别

    SQL标准定义了4类隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不可见的.低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销.Read Uncommitted(读取 ...

  6. Spring web.xml中的配置

    转载博客:http://blog.163.com/zhangke_616/blog/static/191980492007994948206/ 在实际项目中spring的配置文件application ...

  7. 链表的基础题目学习(EPI)

    链表的题目总体来说细节比较多,因为链表的题目在操作链表的过程中本身有些复杂,所以如果链表作为编程题出现的时候,多数情况下题目本身的思路可能不是很复杂,不要把题目往复杂的方向去思考就好了~这里的链表只是 ...

  8. 深入浅出WPF之Binding的使用(二)

    在上一篇中介绍了Binding的基本绑定方法,这一篇中我们在深入的介绍Binding的其他用法. Binding的源也就是数据的源头,在日常的工作中,除了使用像上一篇中的Student对象作为数据源外 ...

  9. 设置ubuntu默认中文字符

    一. Ubuntu默认的中文字符编码 Ubuntu默认的中文字符编码为zh_CN.UTF-8,这个可以在 /etc/environment中看到:sudo gedit /etc/environment ...

  10. POJ 3580 - SuperMemo - [伸展树splay]

    题目链接:http://poj.org/problem?id=3580 Your friend, Jackson is invited to a TV show called SuperMemo in ...