树上差分

树上差分分析

使点x到点y的路径上(链上),全加上一个值,可以选择使用树上差分(不用线段树乱搞....

首先,和普通的差分一样,要有一个tag。然而,对于一个结点,我们需要求出它全部儿子的tag之后,才能算它的tag,进而算出它的值。所以,我们需要每个节点开一个tag(不然在依次遍历儿子的时候,轻儿子的tag不就乱了嘛...会影响的嘛)(前一个括号纯属口胡,就是一个博主的sb错误)

具体操作:(cf意为差分数组)

cf[x] + 1

cf[y] + 1

cf[ lca(x,y) ] - 1 //lca(x,y)算了两遍

cf[ fa[ lca(x,y) ] ] - 1 //为了不对其它的链产生影响

裸栗题

https://www.luogu.org/problem/P3258

这题注意一下: 如果出现这样的情况:x~y, y~z, 即连续进行差分, 需要注意:cf[y]加了两次,而这题中,y是不用加两次的,所以把ans[y]--,即可 (这个操作引题而异吧,自己多想想

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 300000+99;
const int MAXM = MAXN<<1; int n;
struct node{
int size, deep, son, tp, fa, cf, tag;
}a[MAXN];
int visit[MAXN]; int head[MAXN], cnt;
struct seg{
int y, next;
}e[MAXM];
void add_edge(int x, int y) {
e[++cnt].y = y;
e[cnt].next = head[x];
head[x] = cnt;
} void dfs1(int x, int fa) {
a[x].deep = a[fa].deep + 1;
a[x].fa = fa;
a[x].size = 1;
for(int i = head[x]; i; i = e[i].next)
if(e[i].y != fa) {
dfs1(e[i].y , x);
a[x].size += a[e[i].y].size ;
a[x].son = a[a[x].son].size > a[e[i].y].size ? a[x].son : e[i].y;
}
} void dfs2(int x, int tp) {
a[x].tp = tp;
if(a[x].son) dfs2(a[x].son , tp);
for(int i = head[x]; i; i = e[i].next)
if(e[i].y != a[x].fa && e[i].y != a[x].son) {
dfs2(e[i].y, e[i].y);
}
} int lca(int x, int y) {
while(a[x].tp != a[y].tp) {
if(a[a[x].tp].deep < a[a[y].tp].deep) swap(x, y);
x = a[a[x].tp].fa;
}
return a[x].deep < a[y].deep ? x : y;
} void dfs3(int x) {
if(a[x].son == 0) {
a[x].tag += a[x].cf;
// printf("tag_%d : %d\n",x, a[x].tag);
return ;
}
for(int i = head[x]; i; i = e[i].next)
if(e[i].y != a[x].fa) {
dfs3(e[i].y);
a[x].tag += a[e[i].y].tag ;
}
a[x].tag += a[x].cf ;//实际上还要在后面写上a[x].ans = ....
//但这题木有初值,所以我就直接用tag了
// printf("tag_%d : %d\n",x, a[x].tag); } int main() {
scanf("%d",&n);
for(int i = 1; i <= n; i++) scanf("%d",&visit[i]);
int x,y;
for(int i = 1; i < n; i++) {
scanf("%d%d",&x, &y);
add_edge(x,y);
add_edge(y,x);
}
dfs1(1, 0);
dfs2(1, 1);
int Lca;
for(int i = 1; i < n; i++) {
a[visit[i]].cf++;
a[visit[i+1]].cf++;
Lca = lca(visit[i], visit[i+1]);
a[Lca].cf--;
a[a[Lca].fa].cf--;
}
dfs3(1);
for(int i = 2; i <= n; i++) a[visit[i]].tag--;
for(int i = 1; i <= n; i++) printf("%d\n",a[i].tag);
// for(int i = 1; i <= n; i++) printf("cf_%d : %d\n",i, a[i].cf); return 0;
}
/*
5
1 4 5 3 2
1 2
2 4
2 3
4 5
*/

luoguP3258 [JLOI2014]松鼠的新家的更多相关文章

  1. luoguP3258 [JLOI2014]松鼠的新家 题解(树上差分)

    P3258 [JLOI2014]松鼠的新家  题目 树上差分:树上差分总结 #include<iostream> #include<cstdlib> #include<c ...

  2. [luoguP3258] [JLOI2014]松鼠的新家(lca + 树上差分)

    传送门 需要把一条路径上除了终点外的所有数都 + 1, 比如,给路径 s - t 上的权值 + 1,可以先求 x = lca(s,t) 类似数列上差分的思路,可以给 s 和 f[t] 的权值 + 1, ...

  3. BZOJ 3631: [JLOI2014]松鼠的新家( 树链剖分 )

    裸树链剖分... ------------------------------------------------------------------- #include<bits/stdc++ ...

  4. 3631: [JLOI2014]松鼠的新家

    3631: [JLOI2014]松鼠的新家 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 707  Solved: 342[Submit][Statu ...

  5. [填坑]树上差分 例题:[JLOI2014]松鼠的新家(LCA)

    今天算是把LCA这个坑填上了一点点,又复习(其实是预习)了一下树上差分.其实普通的差分我还是会的,树上的嘛,也是懂原理的就是没怎么打过. 我们先来把树上差分能做到的看一下: 1.找所有路径公共覆盖的边 ...

  6. P3258 [JLOI2014]松鼠的新家

    P3258 [JLOI2014]松鼠的新家倍增lca+树上差分,从叶子节点向根节点求前缀和,dfs求子树和即可,最后,把每次的起点和终点都. #include<iostream> #inc ...

  7. 洛谷 P3258 [JLOI2014]松鼠的新家 解题报告

    P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...

  8. 【洛谷】【lca+树上差分】P3258 [JLOI2014]松鼠的新家

    [题目描述:] 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n(2 ≤ n ≤ 300000)个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真 ...

  9. [Luogu 3258] JLOI2014 松鼠的新家

    [Luogu 3258] JLOI2014 松鼠的新家 LCA + 树上差分. 我呢,因为是树剖求的 LCA,预处理了 DFN(DFS 序),于是简化成了序列差分. qwq不讲了不讲了,贴代码. #i ...

随机推荐

  1. VS中添加Web References

    鼠标右击项目->添加->服务引用->高级->添加Web引用->输入URL->点击前往 如下图所示:

  2. PyCharm多行同时输入

    按住ALT,用鼠标在需要的位置点击添加光标,然后输入内容即可

  3. Druid-代码段-4-2

    所属文章:池化技术(一)Druid是如何管理数据库连接的? 本代码段对应流程4.1,连接池瘦身: //连接池瘦身 public void shrink(boolean checkTime, boole ...

  4. Android程序中,内嵌ELF可执行文件-- Android开发C语言混合编程总结

    前言 都知道的,Android基于Linux系统,然后覆盖了一层由Java虚拟机为核心的壳系统.跟一般常见的Linux+Java系统不同的,是其中有对硬件驱动进行支持,以避开GPL开源协议限制的HAL ...

  5. 搭建 Optix 环境

    我参考了 第0个示例 OptixHello 学习Optix的工程配置以及基本框架 的配置过程,该文对于 Optix 的框架介绍的很好,但是按照该文配置遇到了一些问题,我花费了一番功夫自己摸索终于配置好 ...

  6. go语言设计模式之template

    template.go package template import ( "strings" ) type MessageRetriever interface { Messag ...

  7. fallowing-travelvue

    1. 2.Header.vue 3.Swiper.vue . 4.Icons.vue 解决了上次轮播图--分页小圆点不显示的问题,本来以为图片应该都可以,结果换了轮播长图之后,小圆点听话的显示出啦 而 ...

  8. Linux下查看哪些进程占用的CPU、内存资源

    1.CPU占用最多的前10个进程: ps auxw|head -1;ps auxw|sort -rn -k3|head -10 2.内存消耗最多的前10个进程 ps auxw|head -1;ps a ...

  9. 8.jenkins 远程管理

    远程原理 在我们之前的操作中,是直接将指令写在jenkins 里面的 .因为是做实验.所以指令比较简单. 如果是正式环境的话,可能指令就比较多了. 我们可以将他写成脚本. 我们可以再 jenkins的 ...

  10. Scrum会议(第十一周)

    十一周会议 1.任务分配: github相关代码 2.会议记录: 总结并阐述了自己在上周存在的问题以及解决了自己把自己的issue发在了自己的github,并没有把问题发在我们项目小组的项目的issu ...