线性规划VB求解
线性规划VB求解
Rem 定义动态数组
Dim a() As Single, c() As Single, b() As Single, cb() As Single
Dim aa() As Single, cba() As Single, xcb() As Integer, xb() As Integer
Dim m As Integer, n As Integer, l As Integer, k As Integer, cc As Integer, cm As Integer, ka As Integer
Dim qq As Single, tt As Single, z As Single Private Sub Command1_Click() Show
n = Val(InputBox("请输入线性规划典范型方程变量的个数 N=?", "输入数据", ))
m = Val(InputBox("请输入线性规划典范型方程约束条件的个数 M=?", "输入数据", )) Rem 给数组分配空间
ReDim a( To m + , To n + )
ReDim aa( To m + , To n + )
ReDim c(n)
ReDim b(m)
ReDim cb(m)
ReDim cba(n)
ReDim xcb(n)
ReDim xb(m) Rem 对线性规划约束方程增广矩阵A()进行归零计算
For i = To m +
For j = To n +
a(i, j) =
Next j
Next i Rem 输入线性规划约束方程系数矩阵A()
For i = To m
For j = To n
a(i, j) = Val(InputBox("请输入典范型方程约束条件矩阵的系数 a(" & Str(i) & "," & Str(j) & "):", "输入数据", ))
Next j
Next i Rem 输入线性规划约束方程右端常数B()
For i = To m
b(i) = Val(InputBox("请输入典范型方程约束条件右端的常数 b(" & Str(i) & "):", "输入数据", ))
Next i Rem 把右端常数写入增广矩阵A()中
For i = To m
a(i, n + ) = b(i)
Next i Rem 输入线性规划目标函数的系数C()
For i = To n
c(i) = Val(InputBox("请输入典范型方程目标函数的系数 c(" & Str(i) & "):", "输入数据", ))
Next i Rem 把目标函数的系数写入增广矩阵A()中
For i = To n
a(, i) = c(i)
Next i Rem 输入线性规划单纯形初始表中基变量在目标函数中的系数CB()
For i = To m
cb(i) = Val(InputBox("请输入线性规划单纯形初始表中基变量在目标函数中的系数CB(" & Str(i) & "):", "输入数据", ))
Next i Rem 把基变量目标函数的系数写入增广矩阵A()中
For i = To m
a(i, ) = cb(i)
Next i Rem 记录基变量下标值
For i = To m
xb(i) = Val(InputBox("请输入典范型方程第" & Str(i) & "行,基变量的下标:", "输入数据", ))
Next i Rem 检验数的累积数归零并计算检验数
For i = To n
cba(i) =
Next i
For i = To n
For j = To m
cba(i) = cba(i) + a(j, ) * a(j, i)
Next j
a(m + , i) = a(, i) - cba(i)
Next i Rem 计算目标函数值
z =
For i = To m
z = z + a(i, ) * a(i, n + )
Next i
a(m + , n + ) = z Rem 打印增广矩阵A()
For i = To m +
For j = To n +
Print a(i, j);
Next j
Next i
Print Rem 判断所有检验数是否都小于等于零
cc =
For i = To n
If a(m + , i) <= Then
cc = cc +
End If
Next i Rem 统计检验数为零的个数
cm =
For i = To n
If a(m + , i) = Then
cm = cm +
End If
Next i Print "cc="; cc, "cm="; cm Rem 判断此单纯形表是否为最优单纯形表
Do While cc < n Rem 统计检验数最大值并确定进基列
qq = 0.00001
l =
For i = To n
If a(m + , i) > qq Then
qq = a(m + , i)
l = i
End If
Next i
Print "l="; l, Rem 统计进基列上A(i,j)小于等于零的个数
ka =
For i = To m
If a(i, l) <= Then
ka = ka +
End If
Next i Rem 若各进基列上A(i,j)全都小于等于零,则本线性规划有无界解
If ka = m Then
Print "本线性规划有无界解!"
Exit Do
End If Rem 计算比值θ并按最小比值准则确定出基行
For i = To m
If a(i, l) > Then
a(i, n + ) = a(i, n + ) / a(i, l)
End If
Next i tt =
k =
For i = To m
If a(i, l) > And a(i, n + ) < tt Then
tt = a(i, n + )
k = i
End If
Next i Print "k="; k
Print Rem 进行初等行变换时,对临时数组归零计算
For i = To m +
For j = To n +
aa(i, j) =
Next j
Next i Rem 确定枢轴元素,进行初等行变换
oo = a(k, l)
For i = To n +
aa(k, i) = a(k, i) / oo
Next i For i = To m
If i <> k Then
For j = To n +
aa(i, j) = a(i, j) + a(k, j) * (-a(i, l)) Next j
End If Next i Rem 把临时数组AA()的数据写到增广矩阵A()中去
For i = To m +
For j = To n +
a(i, j) = aa(i, j)
Next j
Next i a(k, ) = a(, l)
xb(k) = l Rem 检验数的累积数归零并计算检验数
For i = To n
cba(i) =
Next i
For i = To n
For j = To m
cba(i) = cba(i) + a(j, ) * a(j, i)
Next j
a(m + , i) = a(, i) - cba(i)
Next i Rem 计算目标函数值
z =
For i = To m
z = z + a(i, ) * a(i, n + )
Next i
a(m + , n + ) = z Rem 判断所有检验数是否都小于等于零
cc =
For i = To n
If a(m + , i) <= Then
cc = cc +
End If
Next i Rem 统计检验数为零的个数
cm =
For i = To n
If a(m + , i) = Then
cm = cm +
End If
Next i Rem 打印增广矩阵A()
For i = To m +
For j = To n + Print a(i, j); Next j
Next i
Print Loop Rem 判断此单纯形表是否为最优单纯形表
If cc = n Then Rem 判断本线性规划有唯一最优解或者有多重最优解
If cm = m Then
Print "本线性规划有唯一最优解!"
Print "线性规划的最优解为:"
ElseIf cm > m Then
Print "本线性规划有多重最优解!"
Print "线性规划的最优值为:"
End If
End If Rem 打印线性规划的解和目标函数值
For i = To m Print "X(" & Str(xb(i)) & ")="; a(i, n + ), Next i
Print "其它变量为零。"
Print "Z="; a(m + , n + )
Print Rem 打印增广矩阵A()
For i = To m +
For j = To n + Print a(i, j); Next j
Next i End Sub
线性规划VB求解的更多相关文章
- BZOJ3118 : Orz the MST
对于树边显然只需要减少权值,对于非树边显然只需要增加权值 设i不为树边,j为树边 X[i]:i增加量 X[j]:j减少量 C[i]:修改1单位i的代价 对于每条非树边i(u,v),在树上u到v路径上的 ...
- 数值优化(Numerical Optimization)学习系列-文件夹
概述 数值优化对于最优化问题提供了一种迭代算法思路,通过迭代逐渐接近最优解,分别对无约束最优化问题和带约束最优化问题进行求解. 该系列教程能够參考的资料有 1. <Numerical Optim ...
- Image Processing and Analysis_15_Image Registration:a survey of image registration techniques——1992
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
- 数值优化(Numerical Optimization)学习系列-目录
数值优化(Numerical Optimization)学习系列-目录 置顶 2015年12月27日 19:07:11 下一步 阅读数 12291更多 分类专栏: 数值优化 版权声明:本文为博主原 ...
- [转] 数值优化(Numerical Optimization)学习系列-目录
from:https://blog.csdn.net/fangqingan_java/article/details/48951191 概述数值优化对于最优化问题提供了一种迭代算法思路,通过迭代逐渐接 ...
- Python小白的数学建模课-05.0-1规划
0-1 规划不仅是数模竞赛中的常见题型,也具有重要的现实意义. 双十一促销中网购平台要求二选一,就是互斥的决策问题,可以用 0-1规划建模. 小白学习 0-1 规划,首先要学会识别 0-1规划,学习将 ...
- Python小白的数学建模课-06 固定费用问题
Python 实例介绍固定费用问题的建模与求解. 学习 PuLP工具包中处理复杂问题的快捷使用方式. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 前文讲到几种典型 ...
- [转]利用excel进行线性规划求解
利用线性回归方法求解生产计划 方法一: 1.建立数学模型: 设变量:设生产拉盖式书桌x台,普通式书桌y台,可得最大利润 确定目标函数及约束条件 目标函 ...
- 使用python scipy.optimize linprog和lingo线性规划求解最大值,最小值(运筹学学习笔记)
1.线性规划模型: 2.使用python scipy.optimize linprog求解模型最优解: 在这里我们用到scipy中的linprog进行求解,linprog的用法见https://doc ...
随机推荐
- 虚拟机添加硬盘RAID5并分区、格式化、挂载使用
当全新安装了一块新的硬盘设备后,为了更充分.安全的利用硬盘空间首先要进行磁盘的分区,然后格式化,最后挂载使用. 1.开启虚拟机之前,先添加硬盘设备,在这里我添加了5块硬盘(5块磁盘,3块做RAID5, ...
- Unity中用Mesh画一个圆环(二)
中目标-生成完整面 在之前的内容中我们已经成功生成了一个面,接下来我们要生成剩下的面就很容易了. 我们把之前生成的面当作顶面,接着我们来生成底面. 还记得前面说过\(\color{#1E90FF}{D ...
- map集合中哪些是线程安全的
为什么HashMap是线程不安全的 总说 HashMap 是线程不安全的,不安全的,不安全的,那么到底为什么它是线程不安全的呢?要回答这个问题就要先来简单了解一下 HashMap 源码中的使用的存储结 ...
- JavaScript: 遍历Array的同时删除指定项
一个简单的需求是,在遍历一个数组时,移除指定的项. 下列代码是不能正常工作的: var elements = [1, 5, 5, 3, 5, 2, 4]; for(var i = 0; i < ...
- Mssql 查询某记录前后N条
Sqlserver 查询指定记录前后N条,包括当前数据 条件 [ID] 查询 [N]条 select * from [Table] where ID in (select top ([N]+1) ID ...
- Zabbix-(五)监控Docker容器与自定义jvm监控项
Zabbix-(五)监控Docker容器与自定义jvm监控项 一.前言 前文中讲述了Zabbix对服务器硬件方面的监控功能,本文将讲述利用Zabbix监控Docker容器中的Java Web服务,并通 ...
- 微擎使用post提交,并显示弹出层
微擎使用post提交,并显示弹出层 function changeStatus(id, status) { // 提交数据 var id = parseInt(id); var status = pa ...
- 前端与算法 leetcode 8. 字符串转换整数 (atoi)
目录 # 前端与算法 leetcode 8. 字符串转换整数 (atoi) 题目描述 概要 提示 解析 解法一:正则 解法二:api 解法二:手搓一个api 算法 传入测试用例的运行结果 执行结果 G ...
- centos 生成网卡UUID
在Linux或CentOS中,可以通过如下命令获取网卡的uuid信息: uuidgen 网卡名07d07031-eb0f-4691-8606-befb46645433 查看网卡UUID nmcli c ...
- 关于PHP中依赖注入的详细介绍
依赖注入原理: 依赖注入是一种允许我们从硬编码的依赖中解耦出来,从而在运行时或者编译时能够修改的软件设计模式.简而言之就是可以让我们在类的方法中更加方便的调用与之关联的类. 实例讲解: 假设有一个这样 ...