【洛谷5438】【XR-2】记忆(数论)
【洛谷5438】【XR-2】记忆(数论)
题面
题解
很好的一道题目。
我们首先把所有数的每个质因子的出现次数模二,也就是把最大的完全平方因子给除掉。然后剩下部分一样的就可以产生\(1\)的贡献,所以答案就是\(r-l+1\)减去除掉完全平方因子之后不同的数的个数。
那么如果\(l=1\),答案就是不含完全平方数因子的数的个数,也就是\(\sum_{i=1}^r \mu(i)^2\),这个可以容斥在\(O(\sqrt r)\)的复杂度下得到答案。
现在我们还是一样的枚举除掉某个完全平方因子之后数的个数,那么对于\(k^2\)而言,除掉之后产生的数是\(\displaystyle (\frac{l-1}{k^2},\frac{r}{k^2}]\),于是我们要计算的就是区间内不含其他完全平方因子的数的个数。
最后所有区间取个并就可以计算答案了。
对于区间内不含完全平方因子的数的个数,提前预处理出一部分的答案,剩下的部分直接容斥就好了。
复杂度不太会分析。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 10000010
ll l,r,ans;
bool zs[MAX];
int pri[MAX],tot,mu[MAX],smu[MAX],ssmu[MAX];
void Sieve(int n)
{
mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0)break;
mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=n;++i)smu[i]=smu[i-1]+mu[i];
for(int i=1;i<=n;++i)ssmu[i]=ssmu[i-1]+(mu[i]!=0);
}
ll Calc(ll n)
{
if(n<MAX)return n-ssmu[n];
ll ret=0,blk=sqrt(n);
for(ll i=2,j;i<=blk;i=j+1)
{
j=min(blk,(ll)sqrt(n/(n/i/i)));
ret-=n/i/i*(smu[j]-smu[i-1]);
}
return ret;
}
int main()
{
scanf("%lld%lld",&l,&r);Sieve(MAX-1);
ans=Calc(r)-Calc(l-1);
for(ll i=2,lst=l-1;i*i<=r;++i)
{
ll L=(l-1)/(i*i),R=min(lst,r/(i*i));
if(L<R)ans-=R-L-Calc(R)+Calc(L);
lst=L;
}
printf("%lld\n",ans);
return 0;
}
【洛谷5438】【XR-2】记忆(数论)的更多相关文章
- 洛谷 P2220 [HAOI2012]容易题 数论
洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...
- 洛谷P4204 [NOI2006]神奇口袋 数论
正解:数论 解题报告: 传送门 第一次用\(\LaTeX\)和\(markdown\),,,如果出了什么锅麻烦在评论跟我港句QAQ \(1)x_{i}\)可以直接离散 \(2)y_{i}\)的顺序对结 ...
- 洛谷 p1434 滑雪【记忆化搜索】
<题目链接> Michael喜欢滑雪.这并不奇怪,因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...
- 洛谷 P1464 Function【记忆化搜索】
题目链接 题目描述 对于一个递归函数w(a,b,c) 如果a<=0 or b<=0 or c<=0就返回值1. 如果a>20 or b>20 or c>20就返回w ...
- 洛谷P4358密钥破解 [CQOI2016] 数论
正解:数论 解题报告: 先,放个传送门QwQ 这题难点可能在理解题意,,, 所以我先放个题意QAQ 大概就是说,给定一个整数N,可以被拆成两个质数的成绩p*q,然后给出了一个数e,求d满足e*d=1( ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷P3166 数三角形 [CQOI2014] 数论
正解:数论 解题报告: 传送门! 很久以前做的题了呢,,,回想方法还想了半天QAQ 然后写这题题解主要是因为看到了好像有很新颖的法子,就想着,学习一下趴,那学都学了不写博客多可惜 首先港下最常规的方法 ...
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
- 洛谷P1403 [AHOI2005] 约数研究 [数论分块]
题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...
随机推荐
- python基础(34):线程(二)
1. python线程 1.1 全局解释器锁GIL Python代码的执行由Python虚拟机(也叫解释器主循环)来控制.Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行.虽然 Py ...
- java基础(31):网络通信协议、UDP、TCP
1. 网络通信协议 通过计算机网络可以使多台计算机实现连接,位于同一个网络中的计算机在进行连接和通信时需要遵守一定的规则,这就好比在道路中行驶的汽车一定要遵守交通规则一样.在计算机网络中,这些连接和通 ...
- 在RPA中使用Python批量生成指定尺寸的缩略图!比Ps好用!
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 htt ...
- DevExpress的TextEdit控件没法调整高度解决
场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...
- arcgis api 3.x for js 解决 textSymbol 文本换行显示(附源码下载)
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- Dynamics 365中计算字段与Now进行计算实体导入报错:You can't use Now(), which is of type DateTime, with the current function.
微软动态CRM专家罗勇 ,回复338或者20190521可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me. 计算字段是从Dynamics CRM 2015 SP1版本开始推 ...
- Fundebug微信小程序BUG监控服务支持Source Map
摘要: 自动还原真实出错位置,快速修复BUG. Source Map功能 微信小程序的Source Map功能目前只在 iOS 6.7.2 及以上版本支持. 微信小程序在打包时,会将所有 js 代码打 ...
- [20190920]完善vim调用sqlplus脚本.txt
[20190920]完善vim调用sqlplus脚本.txt --//以前写的http://blog.itpub.net/267265/viewspace-2140936/=>[20170617 ...
- Multi-touch (MT) Protocol 小结
1, 两种多点触摸协议: A类: 处理无关联的接触: 用于直接发送原始数据: B类: 处理跟踪识别类的接触: 通过事件slot发送相关联的独立接触更新. 2, 触摸协议的使用: A类协议: A类协议在 ...
- 抓包工具Fiddler的简单使用
HTTP代理 http代理,就是代理客户机的http访问,主要代理浏览器访问页面 代理服务器是介于浏览器和web服务器之间的一台服务器,有了它之后,浏览器不是直接到Web服务器去取回网页而是向代理服务 ...