url: https://arxiv.org/abs/1503.02531

year: NIPS 2014



简介

将大模型的泛化能力转移到小模型的一种显而易见的方法是使用由大模型产生的类概率作为训练小模型的“软目标”

其中, T(temperature, 蒸馏温度), 通常设置为1的。使用较高的T值可以产生更软的类别概率分布。 也就是, 较高的 T 值, 让学生的概率分布可以更加的接近与老师的概率分布,

下面通过一个直观的例子来感受下

def softmax_with_T(logits, temperature):

    for t in temperature:
total = 0
prob = []
for logit in logits:
total += np.exp(logit/t)
for logit in logits:
prob.append(np.exp(logit/t) / total)
print('T={:<4d}'.format(t), end=' ')
for p in prob:
print('{:0.3f}'.format(p), end=' ')
print()

可以看出, softmax 输出的项比例与 logits原始比例之间的关系与 logits 本身的模长以及 T 值大小相关, 感觉 T 值需要仔细调整下, 至少能反应 logits 之间的大致关系, 而且可以看出, softmax_with_T 受两个变量的影响, 直接来比较的话, 比较难分析. 当 T 远大于 logits 的模长时, softmax 的输出尺度在相同的数量级下(如logits=[6,3,1], T=25), 这样看的话, 即使老师和学生的 logit 相差很远, 经过具有很大 T 的 softamx 之后, 数量级几乎相同, 这样是不合理的. 但是, 下面的公式推导结果加上实验结果表明, 认真看梯度才是王道, 看输出的话, 完全找不到感觉, 对于软标签交叉熵损失

梯度推导

softmax+cross entropy梯度求导

\[\bf{{\frac{\partial{C}}{\partial{z_i}} = \frac{1}{T}(q_i-p_i)
= \frac{1}{T} \left( \frac{e^{z_i/T}}{\sum_je^{z_j/T}} - \frac{e^{v_i/T}}{\sum_je^{v_j/T}}\right)}}
\]

\(e^x\)泰勒展开

\[\bf {e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} \\
x\rightarrow 0, \quad e^x \approx 1+x}
\]

\(T\rightarrow \infty\)时, \(\frac{Z_i}{T}\rightarrow 0\)

\[\bf {{\frac{\partial{C}}{\partial{z_i}} \approx \frac{1}{T} \left(\frac{{1+{z_i/T}}}{N+\sum {z_j/T}} -\frac{{1+{v_i/T}}}{N+\sum {v_j/T}}\right)}}
\]

假设logits已经单独进行了zero-center中心化处理,那么,

\[\bf{\sum_jz_j=\sum_jv_j=0}\\
\Downarrow \\
\bf{\frac{\partial{C}}{\partial{z_i}} \approx \frac{1}{NT^2}{(z_i-v_i)}}
\]

这样的话, 当T值最够大, 方法就变为求老师和学生的 logits 的 L2 距离了.

术语 说明
\(q^{soft}\) 老师模型的 softmax 输出软标签
\(q^{hard}\) 训练集 one-hot 硬标签
\(p^{soft}\) 学生模型的 softmax 输出软标签
\(p^{hard}\) 学生模型的 softmax 输出硬标签(T=1)

\[\bf {\text{loss_cross_entpopy} = \alpha \cdot T^2 \cdot q^{soft}\cdot \ln \left(p^\text{soft} \right) \\ \quad \quad \quad \quad + (1-\alpha) \cdot q^{hard}\cdot \ln \left(p^\text{hard} \right)}
\]

论文中发现通常给予硬标签损失函数 \(\color{red}{可忽略不计的较低权重}\) 可以获得最佳结果。 由于软目标产生的梯度的大小为 \(\frac{1}{T^2}\),因此当使用硬目标和软目标时,将它们乘以 \(T^2\) 是很重要的, 这确保软硬标签对梯度相对贡献在一个数量级。

实验结果

思考

软标签交叉熵函数与 KL 散度的联系



上式中, 由于 p 为老师的预测结果, 模型蒸馏时候, 老师模型被冻结, 从梯度反传来看, 软标签交叉熵函数 等价于 KL 散度.

对于我而言, 这篇论文相对于 Do Deep Nets Really Need to be Deep? 贡献就在于, 将 L2距离 和 KL 散度统一到一个公式中了, 由于到 T 足够大, KL 散度的梯度与 L2 距离的一样. 这篇论文中其他部分没有读懂, 没有看到其他想要的东西. 后面知识积累了有机会在看看有没有新感受吧.

蒸馏入门的话, 推荐 Do Deep Nets Really Need to be Deep? 这篇论文. 从实验分析来说, 各种分析都很到位, 分析的方式也是易读的, 容易理解. 就工程效果来看, 实际上Distilling the Knowledge in a Neural Network 这篇论文有效时候, T一般都挺大的, 那么KL 散度的实际的效果就是 L2 距离, 不如直接用 L2 距离, 理解上简单, 调节超参少, 效果也非常好.

Distilling the Knowledge in a Neural Network的更多相关文章

  1. 【DKNN】Distilling the Knowledge in a Neural Network 第一次提出神经网络的知识蒸馏概念

    原文链接 小样本学习与智能前沿 . 在这个公众号后台回复"DKNN",即可获得课件电子资源. 文章已经表明,对于将知识从整体模型或高度正则化的大型模型转换为较小的蒸馏模型,蒸馏非常 ...

  2. 【论文考古】知识蒸馏 Distilling the Knowledge in a Neural Network

    论文内容 G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network." 2 ...

  3. 1503.02531-Distilling the Knowledge in a Neural Network.md

    原来交叉熵还有一个tempature,这个tempature有如下的定义: \[ q_i=\frac{e^{z_i/T}}{\sum_j{e^{z_j/T}}} \] 其中T就是tempature,一 ...

  4. 论文笔记:蒸馏网络(Distilling the Knowledge in Neural Network)

    Distilling the Knowledge in Neural Network Geoffrey Hinton, Oriol Vinyals, Jeff Dean preprint arXiv: ...

  5. 论文笔记之:Progressive Neural Network Google DeepMind

    Progressive Neural Network  Google DeepMind 摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic f ...

  6. Recurrent Neural Network[survey]

    0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...

  7. [Tensorflow] Cookbook - Neural Network

    In this chapter, we'll cover the following recipes: Implementing Operational Gates Working with Gate ...

  8. (zhuan) Recurrent Neural Network

    Recurrent Neural Network 2016年07月01日  Deep learning  Deep learning 字数:24235   this blog from: http:/ ...

  9. 课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks)——2.Programming Assignments: Building your Deep Neural Network: Step by Step

    Building your Deep Neural Network: Step by Step Welcome to your third programming exercise of the de ...

随机推荐

  1. 小程序--log居中 失焦获取表单中的值

    value="{{username}}" 绑定值 值在js文件的data中 pa==>Vant-Weap中表单中的值,不是双向绑定的. 你获取值后, 值并没有在对用的data ...

  2. python爬取图片

    1.导入需要的模块requests,BeautifulSoup,os(用于文件读写). 2.创建一个类,并初始化.   1 2 3 4 5 6 7 8 class BeautifulPicture: ...

  3. 运维工具ansible-使用与介绍(转)

    转自 Linux轻量级自动运维工具-Ansible浅析 - ~微风~ - 51CTO技术博客http://weiweidefeng.blog.51cto.com/1957995/1895261 Ans ...

  4. 图解Numpy的tile函数

    Numpy的tile(A, reps)函数,就是将原矩阵横向.纵向地复制.tile是瓷砖的意思,顾名思义,这个函数就是把数组像瓷砖一样铺展开来. 举个例子,原矩阵:  横向铺展:  纵向铺展: 横向铺 ...

  5. TP5 where多条件查询

    引用 : https://blog.csdn.net/haibo0668/article/details/78203170/

  6. mysql中的事务隔离级别

    事务是逻辑上的一组操作,要么都执行,要么都不执行. 事务最经典的.经常被拿出来说的例子就是转账了.假如小花要给小白转账1000元,这个转账会涉及到两个关键操作就是:将小花的余额-1000,将小白的余额 ...

  7. Linux系统:Centos7下搭建ClickHouse列式存储数据库

    本文源码:GitHub·点这里 || GitEE·点这里 一.ClickHouse简介 1.基础简介 Yandex开源的数据分析的数据库,名字叫做ClickHouse,适合流式或批次入库的时序数据.C ...

  8. Redis在Window下的安装部署

    一.下载 由于redis官方不支持windows,所以需要在github上下载window的版本:下载地址.redis约定版次版本号(即第一个小数点后的数字)为偶数的版本是稳定版本(如2.8,3.0) ...

  9. c#时间戳相互转换

    /// <summary> /// 获取时间戳 /// </summary> /// <returns></returns> public static ...

  10. Android 亮度调节功能开发思路整理

    做 Android 音视频播放器开发的时候,我们基本都会遇到一类需求:音量 & 亮度 调节.其中做亮度调节功能的时候,发现还是有一定复杂度的. Android亮度调节分为两个类,分别是: An ...