Long Jumps CodeForces - 479D
Valery is a PE teacher at a school in Berland. Soon the students are going to take a test in long jumps, and Valery has lost his favorite ruler!
However, there is no reason for disappointment, as Valery has found another ruler, its length is l centimeters. The ruler already has n marks, with which he can make measurements. We assume that the marks are numbered from 1 to n in the order they appear from the beginning of the ruler to its end. The first point coincides with the beginning of the ruler and represents the origin. The last mark coincides with the end of the ruler, at distance l from the origin. This ruler can be repesented by an increasing sequence a1, a2, ..., an, where ai denotes the distance of the i-th mark from the origin (a1 = 0, an = l).
Valery believes that with a ruler he can measure the distance of d centimeters, if there is a pair of integers i and j (1 ≤ i ≤ j ≤ n), such that the distance between the i-th and the j-th mark is exactly equal to d (in other words, aj - ai = d).
Under the rules, the girls should be able to jump at least x centimeters, and the boys should be able to jump at least y (x < y) centimeters. To test the children's abilities, Valery needs a ruler to measure each of the distances x and y.
Your task is to determine what is the minimum number of additional marks you need to add on the ruler so that they can be used to measure the distances x and y. Valery can add the marks at any integer non-negative distance from the origin not exceeding the length of the ruler.
The first line contains four positive space-separated integers n, l, x, y (2 ≤ n ≤ 105, 2 ≤ l ≤ 109, 1 ≤ x < y ≤ l) — the number of marks, the length of the ruler and the jump norms for girls and boys, correspondingly.
The second line contains a sequence of n integers a1, a2, ..., an (0 = a1 < a2 < ... < an = l), where ai shows the distance from the i-th mark to the origin.
Output
In the first line print a single non-negative integer v — the minimum number of marks that you need to add on the ruler.
In the second line print v space-separated integers p1, p2, ..., pv (0 ≤ pi ≤ l). Number pi means that the i-th mark should be at the distance of pi centimeters from the origin. Print the marks in any order. If there are multiple solutions, print any of them.
Examples
3 250 185 230
0 185 250
1
230
4 250 185 230
0 20 185 250
0
2 300 185 230
0 300
2
185 230
Note
In the first sample it is impossible to initially measure the distance of 230 centimeters. For that it is enough to add a 20 centimeter mark or a 230 centimeter mark.
In the second sample you already can use the ruler to measure the distances of 185 and 230 centimeters, so you don't have to add new marks.
In the third sample the ruler only contains the initial and the final marks. We will need to add two marks to be able to test the children's skills.
OJ-ID:
CodeForces-479D
author:
Caution_X
date of submission:
20191109
tags:
二分,贪心
description modelling:
有一把尺子,尺子上有n个刻度A[i],问能否通过已知的刻度测出长度x和长度y?
输出需要补充的刻度点个数和对应的值
major steps to solve it:
需要补充的刻度点数只能是0,1,2
需要补充的点数为0时可以直接判断
判断能否只补充一个刻度点:①记tx=A[i]+x,表示可以在A[i]右边得出一个刻度能够测出x
再二分查找判断(tx+y)或者(tx-y)在不在已知刻度中,若在,则一个刻度点tx即可,同理,②记ty=A[i]+y,
重复类似①的操作,只要①,②有一个满足条件即可,若都不满足时:记tx=A[i]-x,表示能够在
刻度点A[i]左边找到一个刻度点测出x,记ty=A[i]-y,同理操作。若通过上述操作能够找出,则
只需要补充一个刻度点,否则,需要补充两个刻度点。
warnings:
重点在于点数1和点数2的判断,点数1需要特判
比如x=6,y=7,已知的刻度点有4,5,那么只要补充一个刻度点11即可
AC code:
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn = 1e5+;
int N, L, X, Y, A[maxn]; bool judge (int u) {
if (u < || u > L) return false;
int k = lower_bound(A, A + N, u) - A;
return u == A[k];
} void solve () {
int ans = ;
for (int i = ; i < N; i++) {
if (judge(A[i] - X) || judge(A[i] + X))
ans |= ;
if (judge(A[i] - Y) || judge(A[i] + Y))
ans |= ;
} if (ans == )
printf("0\n");
else if (ans == )
printf("1\n%d\n", X);
else if (ans == )
printf("1\n%d\n", Y);
else { for (int i = ; i < N; i++) {
int tx = A[i] + X;
int ty = A[i] + Y; if (tx <= L && (judge(tx - Y) || judge(tx + Y))) {
printf("1\n%d\n", tx);
return;
} if (ty <= L && (judge(ty - X) || judge(ty + X))) {
printf("1\n%d\n", ty);
return;
}
} for (int i = ; i < N; i++) {
int tx = A[i] - X;
int ty = A[i] - Y; if (tx >= && (judge(tx - Y) || judge(tx + Y))) {
printf("1\n%d\n", tx);
return;
} if (ty >= && (judge(ty - X) || judge(ty + X))) {
printf("1\n%d\n", ty);
return;
}
}
printf("2\n%d %d\n", X, Y);
}
} int main () {
scanf("%d%d%d%d", &N, &L, &X, &Y);
for (int i = ; i < N; i++)
scanf("%d", &A[i]);
solve();
return ;
}
Long Jumps CodeForces - 479D的更多相关文章
- Codeforces 479D - Long Jumps
479D - Long Jumps, 480B - Long Jumps It , or . If we can already measure both x and y, output . Then ...
- 【Codeforces 479D】Long Jumps
[链接] 我是链接,点我呀:) [题意] 如果存在a[j]-a[i]=d 那么认为可以量出来长度d 现在给你量尺上的n个点. 问你最少要加多少个点,才能够量出来长度x和长度y [题解] 设dic1和d ...
- Discrete Centrifugal Jumps CodeForces - 1407D 单调栈+dp
题意: 给你n个数hi,你刚开始在第1个数的位置,你需要跳到第n个数的位置. 1.对于i.j(i<j) 如果满足 max(hi+1,-,hj−1)<min(hi,hj) max(hi,hj ...
- Codeforces Round #274 (Div. 1) B. Long Jumps 数学
B. Long Jumps Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/problem/ ...
- codeforces 480B B. Long Jumps(贪心)
题目链接: B. Long Jumps time limit per test 1 second memory limit per test 256 megabytes input standard ...
- 【树形dp】Codeforces Round #405 (rated, Div. 1, based on VK Cup 2017 Round 1) B. Bear and Tree Jumps
我们要统计的答案是sigma([L/K]),L为路径的长度,中括号表示上取整. [L/K]化简一下就是(L+f(L,K))/K,f(L,K)表示长度为L的路径要想达到K的整数倍,还要加上多少. 于是, ...
- 【codeforces 791D】 Bear and Tree Jumps
[题目链接]:http://codeforces.com/contest/791/problem/D [题意] 你可以从树上的节点一次最多走k条边. (称为跳一次); 树为无权树; 然后问你任意两点之 ...
- Codeforces 1500F - Cupboards Jumps(set)
Codeforces 题面传送门 & 洛谷题面传送门 nb tea!!!111 首先很显然的一件事是对于三个数 \(a,b,c\),其最大值与最小值的差就是三个数之间两两绝对值的较大值,即 \ ...
- CodeForces 771C Bear and Tree Jumps 树形DP
题意: 给出一棵树,一个人可以在树上跳,每次最多跳\(k(1 \leq k \leq 5)\)个点 定义\(f(s,t)\)为从顶点\(s\)跳到顶点\(t\)最少需要跳多少次 求\(\sum\lim ...
随机推荐
- Redux Class(immutable Record)引入的必要性 && Navigation引入方式
我的意见 和大家讨论一下几个问题 1. 项目里面没有用class规定的请求数据结构,调试数据的时候无法从前端获取请求的数据格式,要看后端接口,增加了调试的难度.我们以前会用immutable Reco ...
- Python深拷贝与浅拷贝区别
可变类型 如list.dict等类型,改变容器内的值,容器地址不变. 不可变类型 如元组.字符串,原则上不可改变值.如果要改变对象的值,是将对象指向的地址改变了 浅拷贝 对于可变对象来说,开辟新的内存 ...
- 通过jgit一次性升级fastjson版本
背景:笔者所在公司经历了三次fastjson的升级,由于集群,工程数量众多,每次升级都很麻烦.因此开发了一个java的升级工具. 功能介绍: 功能介绍:一个jar文件,通过java -jar命令,输入 ...
- Idea中新建yml不显示叶子形状的原因
IntelliJ IDEA 2019.2.4 x64 (版本),不显示叶子形状,导致写配置无法自动提示(自动提示请安装插件)Spring Assistant 先看一下Editor--->File ...
- Swoole Redis 连接池的实现
概述 这是关于 Swoole 入门学习的第九篇文章:Swoole Redis 连接池的实现. 第八篇:Swoole MySQL 连接池的实现 第七篇:Swoole RPC 的实现 第六篇:Swoole ...
- 2019年最新阿里Java工程师面试题
一.单选题(共10题,每题5分) 1 关于设计模式遵循的原则,说法错误的是? A.组合优于继承 B.针对实现编程 C.对扩展开放,对修改关闭 D.降低对象之间的耦合 参考答案:B 答案解析: 设计 ...
- NIO零拷贝的深入分析
深入分析通过Socket进行数据文件传递中的传统IO的弊端以及NIO的零拷贝实现原理,及用户空间和内核空间的切换方式 传统的IO流程 在这个过程中: 数据从磁盘拷贝进内核空间缓冲区 从内核空间缓冲区拷 ...
- 【spring-boot 源码解析】spring-boot 依赖管理梳理图
在文章 [spring-boot 源码解析]spring-boot 依赖管理 中,我梳理了 spring-boot-build.spring-boot-parent.spring-boot-depen ...
- 为Bootstrap Modal(模态框)全局添加拖拽操作
在js中绑定方法 $(document).on("show.bs.modal", ".modal", function(){ $(this).draggable ...
- Selenium(十三):验证码的处理、WebDriver原理
1. 验证码的处理 对于Web应用来说,大部分的系统在用户登录时都要求用户输入验证码.验证码的类型很多,有字母数字的.有汉字的,甚至还需要用户输入一道算术题的答案的.对于系统来说,使用验证码可以有效地 ...