首先说明一下特征值:设A是n阶方阵,如果存在 λ 和n维非零向量X,使 AX = λX ,则 λ 称为方阵A的一个特征值,X为方阵A对应于或属于特征值 λ 的一个特征向量。

  AX = λX 的过程是一个从矩阵乘法到数乘操作的过程。数乘的实质是对向量X进行缩放,缩放因子为λ ,缩放只改变大小,不改变方向。找到特征值和特征向量的过程称为特征值分解,可以利用解线性方程组(λE-A)X=0 来完成。对应于不同特征值的特征向量线性无关,如果原矩阵A是对称矩阵,对应于不同特征值的特征向量必定正交 。

  如果得到了N阶对称矩阵A的N个特征值,且N个特征值均不同,那么特征向量必定正交,就可以经过标准化后(是否需要,如何做?存疑?直接除以长度么?),作为A的标准正交基。将A向N个基上投影,投影长度=特征值绝对值,特征值越大,表示了矩阵在对应的特征向量上的方差越大,功率越大,信息量越多。因此,特征值分解得到了特征值和特征向量,特征值的大小表示了对应的特征有多重要,特征向量的方向表示了特征的属性。

  既然特征值越大的方向上包含了越多的信息,就可以在特征值分解后,只保留特征值较大的方向对应的数据,删除小特征值对应方向的数据,保证了数据量减少,而有用信息基本不变,这就是PCA的思想。

  (有一个疑问:只有对称阵的特征值不同才能保证特征向量彼此正交,如果特征值相同,线性无关无法保证,如何找正交基呢?)

  注意:特征值分解要求A是方阵,如果A不是方阵,而是一个1920x1080的灰度图构成的矩阵,无法找特征值,此时可以找奇异值。

  

  奇异值:矩阵A的大小为mxn,奇异值分解将矩阵分解成若干个秩一矩阵之和,即

每个都是奇异值,按照从大到小的顺序排列,u和v分别表示列向量,uv' 是秩为1的矩阵,( 可以利用 R(A)+R(B)-n <= R(AB) <= min{R(A),R(B)} 得到R(uv')=1)。只保留较大的奇异值对应的数据,同样可以达到降维的效果。下面是对一张图片进行的实验。

Matlab代码如下:

 clear,clc;
close all; imgorigin = imread('saoirse.jpg');
imgray = double(rgb2gray(imgorigin));
subplot();imshow(imgray,[]);title('original-gray');
[m,n] = size(imgray);
[U,S,V] = svd(imgray);
%返回与imgray同大小的对角矩阵S,两个矩阵U和V,且满足imgray=U*S*V'
%若imgray大小为m×n,则U为m×m矩阵,V为n×n矩阵.S为m×n矩阵,奇异值在S的对角线上 decomp = U(:,:)*S(:,)*V(:,)';
subplot();imshow(decomp,[]);title('svd-前1个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前5个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前10个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前50个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前80个特征') decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前150个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前220个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前282个特征');

参考:

1. https://blog.csdn.net/index20001/article/details/73501632

2. https://www.zhihu.com/question/22237507

3. 线性代数与空间解析几何-郑宝东

奇异值分解(SVD)的更多相关文章

  1. 矩阵奇异值分解(SVD)及其应用

    机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题

  2. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  3. 特征值分解与奇异值分解(SVD)

    1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...

  4. 奇异值分解(SVD) --- 几何意义

    原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...

  5. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  6. 【转载】奇异值分解(SVD)计算过程示例

    原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U ...

  7. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  8. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

  9. 用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

    用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最 ...

  10. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

随机推荐

  1. 目标检测——Faster R_CNN使用smooth L1作为bbox的回归损失函数原因

    前情提要—— 网上关于目标检测框架——faster r_cnn有太多太好的博文,这是我在组会讲述faster r_cnn这一框架时被人问到的一个点,当时没答上来,于是会下好好百度和搜索一下研究了一下这 ...

  2. java中四种修饰符(private、default、protected、public)的访问权限

    权限如下: no. 范围 private default protected public 1 同一包下的同一个类 √ √ √ √ 2 同一包下的不同类 × √ √ √ 3 不同包下的子类 × × √ ...

  3. anaconda安装Opencv报错:Could NOT find PythonLibs: Found unsuitable version "2.7.6",

    机器上装了两个python,一个是默认的,一个是anaconda.安装opencv时就报错了: -- Found PythonInterp: /home/deeplp/anaconda2/bin/py ...

  4. 百度学术导入endnote出现choose an import filter解决

    一般情况,我们在百度学术搜索一篇文章, 点击引用,出来一个 点击EndNote,将下载好的.enw双击出现 百度了一些,可以不使用百度学术,用pubmed,点击citation. 发现一个解决办法.在 ...

  5. Linux网络编程学习(十) ----- Socket(第六章)

    前言:由于第五章主要介绍了TCP和UDP协议以及两者的包头的字段以及相应的功能,这里就不介绍了,对着字段看功能就好了,后续开始学习第六章 1.Socket Socket实质上就是提供了通信的端点,每个 ...

  6. React-Native:解决真机调试时候Could not get BatchedBridge, make sure your bundle is packaged properly

    问题一:用真机通过USB连接电脑调试的时候报如下错:Could not get BatchedBridge, make sure your bundle is packaged properly,如图 ...

  7. 基于STM32F429+HAL库编写的定时器主从门控模式级联输出固定个数PWM脉冲的程序

    硬件设备   42步进电机,步进电机驱动器,正点原子F429开发板 开发软件    keil5,Cube 综述   一般要精准的控制电机,就要控制单片机的引脚输出指定个数的PWM波,有多种可实现的方法 ...

  8. springmvc+mybatis环境搭建

    1.spring+mybatis 环境搭建: A.配置jdbc和dbcp数据源:注意版本com.mysql.cj.jdbc.Driver B.配置sessionfactory,绑定dbcp及配置map ...

  9. 吴裕雄 python 数据可视化

    import pandas as pd df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taob ...

  10. python学习Day13 函数的嵌套定义、global、nonlocal关键字、闭包及闭包的运用场景、装饰器

    复习 1.函数对象:函数名 => 存放的是函数的内存地址1)函数名 - 找到的是函数的内存地址2)函数名() - 调用函数 => 函数的返回值 eg:fn()() => fn的返回值 ...