奇异值分解(SVD)
首先说明一下特征值:设A是n阶方阵,如果存在 λ 和n维非零向量X,使 AX = λX ,则 λ 称为方阵A的一个特征值,X为方阵A对应于或属于特征值 λ 的一个特征向量。
AX = λX 的过程是一个从矩阵乘法到数乘操作的过程。数乘的实质是对向量X进行缩放,缩放因子为λ ,缩放只改变大小,不改变方向。找到特征值和特征向量的过程称为特征值分解,可以利用解线性方程组(λE-A)X=0 来完成。对应于不同特征值的特征向量线性无关,如果原矩阵A是对称矩阵,对应于不同特征值的特征向量必定正交 。
如果得到了N阶对称矩阵A的N个特征值,且N个特征值均不同,那么特征向量必定正交,就可以经过标准化后(是否需要,如何做?存疑?直接除以长度么?),作为A的标准正交基。将A向N个基上投影,投影长度=特征值绝对值,特征值越大,表示了矩阵在对应的特征向量上的方差越大,功率越大,信息量越多。因此,特征值分解得到了特征值和特征向量,特征值的大小表示了对应的特征有多重要,特征向量的方向表示了特征的属性。
既然特征值越大的方向上包含了越多的信息,就可以在特征值分解后,只保留特征值较大的方向对应的数据,删除小特征值对应方向的数据,保证了数据量减少,而有用信息基本不变,这就是PCA的思想。
(有一个疑问:只有对称阵的特征值不同才能保证特征向量彼此正交,如果特征值相同,线性无关无法保证,如何找正交基呢?)
注意:特征值分解要求A是方阵,如果A不是方阵,而是一个1920x1080的灰度图构成的矩阵,无法找特征值,此时可以找奇异值。
奇异值:矩阵A的大小为mxn,奇异值分解将矩阵分解成若干个秩一矩阵之和,即
每个都是奇异值,按照从大到小的顺序排列,u和v分别表示列向量,uv' 是秩为1的矩阵,( 可以利用 R(A)+R(B)-n <= R(AB) <= min{R(A),R(B)} 得到R(uv')=1)。只保留较大的奇异值对应的数据,同样可以达到降维的效果。下面是对一张图片进行的实验。
Matlab代码如下:
clear,clc;
close all; imgorigin = imread('saoirse.jpg');
imgray = double(rgb2gray(imgorigin));
subplot();imshow(imgray,[]);title('original-gray');
[m,n] = size(imgray);
[U,S,V] = svd(imgray);
%返回与imgray同大小的对角矩阵S,两个矩阵U和V,且满足imgray=U*S*V'
%若imgray大小为m×n,则U为m×m矩阵,V为n×n矩阵.S为m×n矩阵,奇异值在S的对角线上 decomp = U(:,:)*S(:,)*V(:,)';
subplot();imshow(decomp,[]);title('svd-前1个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前5个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前10个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前50个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前80个特征') decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前150个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前220个特征'); decomp = U(:,:)*S(:,:)*V(:,:)';
subplot();imshow(decomp,[]);title('svd-前282个特征');
参考:
1. https://blog.csdn.net/index20001/article/details/73501632
2. https://www.zhihu.com/question/22237507
3. 线性代数与空间解析几何-郑宝东
奇异值分解(SVD)的更多相关文章
- 矩阵奇异值分解(SVD)及其应用
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题
- 转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...
- 特征值分解与奇异值分解(SVD)
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...
- 奇异值分解(SVD) --- 几何意义
原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD ...
- [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用
本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...
- 【转载】奇异值分解(SVD)计算过程示例
原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U ...
- 一步步教你轻松学奇异值分解SVD降维算法
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...
- 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...
- 用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)
用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最 ...
- 奇异值分解(SVD)原理详解及推导(转载)
转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...
随机推荐
- 简介C#读取XML的方式(转)
在程序中访问进而操作XML文件一般有两种模型,分别是使用DOM(文档对象模型)和流模型,使用DOM的好处在于它允许编辑和更新XML文档,可以随机访问文档中的数据,可以使用XPath查询. XML作用 ...
- java8 for ,forEach ,lambda forEach , strean forEach , parller stream forEach, Iterator性能对比
java8 for ,forEach ,Iterator,lambda forEach ,lambda strean forEach , lambda parller stream forEach性 ...
- CSS设计中的错误大整理!
如果有人发明时间机器,那应该将这些错误纠正,不然可把前端程序猿们给还惨了.大家一起看看都有哪些CSS规则应该完善. (CSS 代码) white-space: nowrap 应该 white-spac ...
- url跳转漏洞(1)
转载 https://landgrey.me/open-redirect-bypass/ 0x00:漏洞场景 URL跳转漏洞的出现场景还是很杂的,出现漏洞的原因大概有以下5个: 1. 写代码时没有考虑 ...
- jeecg之弹窗插件lhgdialog小结
说到弹窗,在jeecg中弹窗用到最多的地方无非是新增/编辑的弹窗. 1.列表页面新增编辑按钮触发的弹窗即lhgdialog,不论是add/update,最终走的都是curdtools.js中的crea ...
- Prometheus
官方网址:https://prometheus.io/ GitHub网址:https://github.com/prometheus/prometheus 软件下载地址:https://prometh ...
- windows安装composer
Composer 是 PHP 的一个依赖管理工具(不是一个包管理器).它允许你申明项目所依赖的代码库,它会在你的项目中为你安装他们. 在windows下安装的方法 方法一:使用安装程序 这是将 Com ...
- Spinner 默认选中
https://blog.csdn.net/u014737138/article/details/49495847 spinner.setSelection(2,true); 就这样一行代码,很重要 ...
- Linux-01
Linux各目录的作用 /bin/ 存放系统命令的目录,普通用户和超级用户都可以执行.不过放在/bin下的命令在单用户模式下也可以执行 /sbin/ 保存和系统环境设置相关的命令,只有超级用户可以使用 ...
- 【docker 入门 - 01】- Docker 在 Centos7 上安装与测试
一.学习文档 官网网站: https://www.docker.com 中文网站:http://www.docker-cn.com 官方安装文档:https://docs.docker.com/ins ...