BZOJ3837 : [Pa2013]Filary
当m取2时,k至少为$\frac{n}{2}$
所以在最优解中每个数被选中的概率至少为$\frac{1}{2}$
每次随机选取一个位置i,计算出其它数与$a_i$的差值,将差值分解质因数
所有质因数中出现次数的最大值加上与$a_i$相等的数的个数就是选取i的情况下的最优解
为了最大化m,需要将所有相同位置的因数乘起来
给每个位置随机一个权值,全部异或起来求出Hash值,排序后扫一遍统计即可
因为$a_i\leq10^7$,所以可以先一遍线性筛求出每个数是被哪个素数筛掉的,这样就可以做到$O(\log n)$分解质因数
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=100010,M=10000001,P=664600;
int n,i,j,x,a[N],b[N],maxv,p[P],tot,ans1,ans2,T,cnt,pos[P],las[P],now,v[M],tmp[32],fac,vis[P];
struct PI{
int cnt,hash,num;
PI(){cnt=hash=0;num=1;}
PI(int _cnt,int _hash,int _num){cnt=_cnt,hash=_hash,num=_num;}
}pool[P];
inline bool cmp(PI a,PI b){return a.hash<b.hash;}
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void divide(int x,int y){
int i,j,k;
for(i=0;i<fac;i++)vis[tmp[i]]=0;
for(fac=0;x^1;vis[v[x]]*=p[v[x]],x/=p[v[x]])if(!vis[v[x]])tmp[fac++]=v[x],vis[v[x]]=1;
for(i=0;i<fac;i++){
k=vis[tmp[i]];
if(las[tmp[i]]^T)las[tmp[i]]=T,pool[j=pos[tmp[i]]=++now]=PI(0,0,k);else j=pos[tmp[i]];
pool[j].cnt++,pool[j].hash^=y;
if(pool[j].num>k)pool[j].num=k;
}
}
int main(){
pool[0].hash=-1;
for(read(n);i<n;i++){
read(a[i]);
while(!b[i])b[i]=rand();
if(a[i]>maxv)maxv=a[i];
}
for(i=2;i<=maxv;i++){
if(!v[i])p[v[i]=++tot]=i;
for(j=1;j<=tot;j++){
if(i*p[j]>maxv)break;
v[i*p[j]]=j;
if(i%p[j]==0)break;
}
}
for(T=1;T<=4;T++){
for(x=a[rand()%n],i=cnt=now=0;i<n;i++)if(a[i]!=x)divide(a[i]>x?(a[i]-x):(x-a[i]),b[i]);else cnt++;
sort(pool+1,pool+now+1,cmp);
for(j=0,i=1;i<=now;i++)if(pool[i].hash^pool[j].hash){
if(j){
if(pool[j].cnt+cnt>ans1)ans1=pool[j].cnt+cnt,ans2=pool[j].num;
else if(pool[j].cnt+cnt==ans1&&pool[j].num>ans2)ans2=pool[j].num;
}
j=i;
}else pool[j].num*=pool[i].num;
if(pool[j].cnt+cnt>ans1)ans1=pool[j].cnt+cnt,ans2=pool[j].num;
else if(pool[j].cnt+cnt==ans1&&pool[j].num>ans2)ans2=pool[j].num;
}
return printf("%d %d",ans1,ans2),0;
}
BZOJ3837 : [Pa2013]Filary的更多相关文章
- Bzoj3837 [Pa2013]Filary(随机化)
题面 权限题 题解 这题有一个很好的性质,就是一定有$k>\frac n2$.接着考虑怎么做. 我们随机选取一个数$x$,然后将所有数与它作差,那么只需要找出$k$个差值使得他们的最大公因数大于 ...
- 【BZOJ3837】[Pa2013]Filary 随机化神题
[BZOJ3837][Pa2013]Filary Description 给定n个正整数,从中挑出k个数,满足:存在某一个m(m>=2),使得这k个数模m的余数相等. 求出k的最大值,并求出此时 ...
- 【BZOJ3837】[PA2013]Filary
[BZOJ3837][PA2013]Filary 题面 darkbzoj 题解 考虑到模数为\(2\)时答案至少为\(\frac n2\),这是我们答案的下界. 那么我们对于任意的一个数,它们答案集合 ...
- bzoj 3837 pa2013 Filary
bzoj 先搞第一问.考虑简单情况,如果\(m=2\),那么一定有个剩余类大小\(\ge \lceil\frac{n}{2}\rceil\),同时这也是答案下界 然后我们每次随机选出一个数\(a_i\ ...
- bzoj 3837 (随机过题法了解一下)
3837: [Pa2013]Filary Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 395 Solved: 74[Submit][Status] ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 【BZOJ3733】[Pa2013]Iloczyn (搜索)
[BZOJ3733][Pa2013]Iloczyn (搜索) 题面 BZOJ 题解 把约数筛出来之后,直接爆搜,再随便剪枝就过了. 最近一句话题解倾向比较严重 #include<iostream ...
- 【BZOJ】3737: [Pa2013]Euler
题意: 求满足\(phi(a)=n\)的\(a\)的个数.(\(n \le 10^{10}\)) 分析 这种题一开始就感觉是搜索= = 题解 首先容易得到 \[\phi(n) = \prod_{i} ...
- BZOJ 3736: [Pa2013]Karty
Description 一个0/1矩阵,求能覆盖所有 \(1\) ,同时不覆盖所有 \(0\) 的矩阵,使这个面积最大. Sol DP/悬线法. 首先,所求的矩阵一定可以覆盖所有贴边的悬线. 用悬线法 ...
随机推荐
- IOS APP的所有图标尺寸规范
转自: http://blog.csdn.net/chonbj/article/details/25133247 像我一样记不住iOS应用图标像素尺寸的开发者不在少数,我经常需要查询不同设备上的应用尺 ...
- IOS AFNetworking
http://www.coneboy.com/?p=716 AFNetworking 使用总结 (用法+JSON解析) 2013 年 4 月 11 日 No comments Article 这几天 ...
- RPM常用组合【转载】
RPM常用组合 -ivh:安装显示安装进度--install--verbose--hash -Uvh:升级软件包--Update: -qpl:列出RPM软件包内的文件信息[Query Package ...
- HTML前端--各种小案例
掬一捧清水,放逐在江河,融入流逝的岁月,将心洗净; 捻一缕心香,遥寄在云端,在最深的红尘里重逢,将心揉碎; 望一程山水,徘徊在月下,在相思渡口苦守寒冬,将心落寞. 案例一: 隐藏扩展域,并去掉afte ...
- django-cms 代码研究(五)深入(代码结构)
前言: 前戏已经做得比较充分了,下面我们开始步入正题. 代码结构: cms |--admin (猜测是admin界面的二次开发和改良) |--cache (猜测是缓存机制的处理) |--extensi ...
- Spring面试题集
一.Spring简介 * Spring框架有哪几部分组成? Spring框架有七个模块组成组成,这7个模块(或组件)均可以单独存在,也可以与其它一个或多个模块联合使用,主要功能表现如下: ...
- Linux系统排查3——I/O篇
当磁盘无法写入的时候,一般有以下可能: 文件系统只读 磁盘已满 I节点使用完 一. 遇到只读的文件系统 文件系统自动设置成只读可能是系统自我保护的一种机制,因此需要实现弄清究竟是什么原因造成了文件系统 ...
- JavaScript设计模式 - 代理模式
代理模式是为一个对象提供一个代用品或占位符,以便控制对它的访问 代理模式的用处(个人理解):为了保障当前对象的单一职责(相对独立性),而需要创建另一个对象来处理调用当前对象之前的一些逻辑以提高代码的效 ...
- PageBean分页组件
Page.java package org.guangsoft.bean; import java.util.List; public class Page { private int current ...
- VelocityTracker简介
android.view.VelocityTracker主要用跟踪触摸屏事件(flinging事件和其他gestures手势事件)的速率.用addMovement(MotionEvent)函数将Mot ...