1597: [Usaco2008 Mar]土地购买

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit:
2931  Solved: 1091
[Submit][Status][Discuss]

Description

农夫John准备扩大他的农场,他正在考虑N (1 <= N <=
50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <=
1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换.
如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费.
他需要你帮助他找到最小的经费.

Input

* 第1行: 一个数: N

* 第2..N+1行:
第i+1行包含两个数,分别为第i块土地的长和宽

Output

* 第一行: 最小的可行费用.

Sample Input

4
100 1
15 15
20 5
1
100

输入解释:

共有4块土地.

Sample Output

500

HINT

FJ分3组买这些土地: 第一组:100x1, 第二组1x100, 第三组20x5 和
15x15 plot. 每组的价格分别为100,100,300, 总共500.

Source

Gold

Solution

DP没什么好说的,至于数据范围,铁定得优化到$O(n/nlogn)$,那么考虑斜率优化

题目大意就是划分多组,每组最长*每组最宽为每组的价值,要求价值最小

很容易发现,如果一块土地,他的长和宽都小于等于他所在组的最长长和最长宽,那么这块土地是没有存在的必要的

那么可以考虑对原始数据进行排序,并用 单调栈 去维护一下长宽,达到目的

这样容易得出转移 $dp[i]=min(dp[j]+y[j+1]*x[i])$

那么进行斜率优化得到$(dp[j-1]-dp[k-1])/(y[j]-y[k])>-x[i]$

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x;
}
#define maxn 50010
int n,top,que[maxn],l,r;
long long stackx[maxn],stacky[maxn],dp[maxn];
struct Fieldnode
{
int a,b;
bool operator < (const Fieldnode & A) const
{
if (a==A.a) return b<A.b;
return a<A.a;
}
}fie[maxn];
double slope(int i,int j)
{return (dp[j]-dp[i])/(stacky[i+]-stacky[j+]);}
int main()
{
n=read();
for (int i=; i<=n; i++)fie[i].a=read(),fie[i].b=read();
sort(fie+,fie+n+);
for (int i=; i<=n; i++)
{
while (top && fie[i].b>=stacky[top]) top--;
top++; stackx[top]=fie[i].a; stacky[top]=fie[i].b;
}
for (int tmp,i=; i<=top; i++)
{
while (l<r && slope(que[l],que[l+])<stackx[i]) l++;
tmp=que[l];
dp[i]=dp[tmp]+stackx[i]*stacky[tmp+];
while (l<r && slope(que[r],i)<slope(que[r-],que[r])) r--;
que[++r]=i;
}
printf("%lld\n",dp[top]);
return ;
}

一道奶牛题做成这样也是醉了...

【BZOJ-1597】土地购买 DP + 斜率优化的更多相关文章

  1. BZOJ 1597: [Usaco2008 Mar]土地购买( dp + 斜率优化 )

    既然每块都要买, 那么一块土地被另一块包含就可以不考虑. 先按长排序, 去掉不考虑的土地, 剩下的土地长x递增, 宽y递减 dp(v) = min{ dp(p)+xv*yp+1 } 假设dp(v)由i ...

  2. 1597: [Usaco2008 Mar]土地购买 [ dp+斜率优化 ] 未完

    传送门 1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1979  Solved: 705[Subm ...

  3. BZOJ1597: [Usaco2008 Mar]土地购买(dp 斜率优化)

    题意 题目链接 Sol 重新看了一遍斜率优化,感觉又有了一些新的认识. 首先把土地按照\((w, h)\)排序,用单调栈处理出每个位置第向左第一个比他大的位置,显然这中间的元素是没用的 设\(f[i] ...

  4. JZYZOJ1330 土地购买 dp 斜率优化

    不用long long的话只能ac一半的点而且完全查不出来错...放弃cin保平安..   x[i],y[i]分别为第i块土地的长和宽,输入后需要排序然后去掉冗余数据,最后得到的x[i]递增y[i]递 ...

  5. bzoj1597: [Usaco2008 Mar]土地购买 dp斜率优化

    东风吹战鼓擂第一题土地购买送温暖 ★★★   输入文件:acquire.in   输出文件:acquire.out   简单对比时间限制:1 s   内存限制:128 MB 农夫John准备扩大他的农 ...

  6. BZOJ1597土地购买 【斜率优化DP】

    BZOJ1597土地购买 [斜率优化DP] Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足( ...

  7. 土地购买 (斜率优化dp)

    土地购买 (斜率优化dp) 题目描述 农夫 \(John\) 准备扩大他的农场,他正在考虑$ N(1 \leqslant N \leqslant 50,000)$ 块长方形的土地. 每块土地的长宽满足 ...

  8. BZOJ 1597 [Usaco2008 Mar]土地购买:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1597 题意: 有n块矩形土地,长为a[i],宽为b[i]. FJ想要将这n块土地全部买下来 ...

  9. BZOJ 1597 土地购买(斜率优化DP)

    如果有一块土地的长和宽都小于另一块土地的长和宽,显然这块土地属于“赠送土地”. 我们可以排序一下将这些赠送土地全部忽略掉,一定不会影响到答案. 那么剩下的土地就是长递减,宽递增的.令dp[i]表示购买 ...

随机推荐

  1. HTTP下密码的安全传输、OAuth认证

    在复杂的web环境下,我们没有百分的把握保证信息在传输的过程中不被接货,那不是用明文如何告诉服务器自己的身份呢? 在一些高度通信安全的网络中,数据传输会使用HTTPS作为传输协议,但是通常情况下我们没 ...

  2. 使用gogs,drone搭建自动部署

    使用gogs,drone搭建自动部署 使用gogs,drone,docker搭建自动部署测试环境 Gogs是一个使用go语言开发的自助git服务,支持所有平台Docker是使用go开发的开源容器引擎D ...

  3. Linux 网络编程详解二(socket创建流程、多进程版)

    netstat -na | grep " --查看TCP/IP协议连接状态 //socket编程提高版--服务器 #include <stdio.h> #include < ...

  4. web学习第一章

    web学习第一章   我是大概9月10日开始走上IT之路的,一开始学习了小段时间的自动化办公软件, 昨天我开始学习客户端网页编程,我了解什么是WEB,一些比较老古董的计算模式和发展历史,印象最让我深刻 ...

  5. scala 学习笔记(05) OOP(中)灵活的trait

    trait -- 不仅仅只是接口! 接上回继续,scala是一个非常有想法的语言,从接口的设计上就可以发现它的与众不同.scala中与java的接口最接近的概念是trait,见下面的代码: packa ...

  6. java:使用匿名类直接new接口

    java中的匿名类有一个倍儿神奇的用法,见下面代码示例: package contract; public interface ISay { void sayHello(); } 上面是一个简单的接口 ...

  7. sqlserver数据库附加分离备份还原命令

    --获取所有数据库的名称 select [name] from master.dbo.sysdatabases where [name]='master' --判断数据库是否存在 if exists( ...

  8. 是什么时候开始学习gulp了

    转自:http://www.ydcss.com/archives/18 简介: gulp是前端开发过程中对代码进行构建的工具,是自动化项目的构建利器:她不仅能对网站资源进行优化,而且在开发过程中很多重 ...

  9. JQuery 图片略缩与弹出预览 jqthumb fancybox

    弹出框插件-FANCYBOXhttp://www.jq22.com/jquery-info28 jqthumb.js缩略图插件 http://www.ijquery.cn/?p=798

  10. Java:反射

    初识Java反射机制: 从上面的描述可以看出Java的反射机制使得Java语言可以在运行时去认识在编译时并不了解的类/对象的信息,并且能够调用相应的方法或修改属性的值.Java反射机制的核心就是允许在 ...