The corpora with NLTK

寻找文件路径的代码

# -*- coding: utf-8 -*-
"""
Spyder Editor This is a temporary script file.
""" import nltk,sys,os
print(nltk.__file__) if sys.platform.startswith('win'):
# Common locations on Windows:
sys.path += [
str(r'C:\nltk_data'), str(r'D:\nltk_data'), str(r'E:\nltk_data'),
os.path.join(sys.prefix, str('nltk_data')),
os.path.join(sys.prefix, str('lib'), str('nltk_data')),
os.path.join(os.environ.get(str('APPDATA'), str('C:\\')), str('nltk_data'))
]
else:
# Common locations on UNIX & OS X:
sys.path += [
str('/usr/share/nltk_data'),
str('/usr/local/share/nltk_data'),
str('/usr/lib/nltk_data'),
str('/usr/local/lib/nltk_data')
]

nltk的corpus语料库是一个所有语言的数据集合。大多数语料库是TXT文本存储,少数为xml和其它格式,

In this part of the tutorial, I want us to take a moment to peak into the corpora we all downloaded! The NLTK corpus is a massive dump of all kinds of natural language data sets that are definitely worth taking a look at.

Almost all of the files in the NLTK corpus follow the same rules for accessing them by using the NLTK module, but nothing is magical about them. These files are plain text files for the most part, some are XML and some are other formats, but they are all accessible by you manually, or via the module and Python. Let's talk about viewing them manually.

Depending on your installation, your nltk_data directory might be hiding in a multitude of locations. To figure out where it is, head to your Python directory, where the NLTK module is. If you do not know where that is, use the following code:

import nltk
print(nltk.__file__)

Run that, and the output will be the location of the NLTK module's __init__.py. Head into the NLTK directory, and then look for the data.py file.

The important blurb of code is:

if sys.platform.startswith('win'):
# Common locations on Windows:
path += [
str(r'C:\nltk_data'), str(r'D:\nltk_data'), str(r'E:\nltk_data'),
os.path.join(sys.prefix, str('nltk_data')),
os.path.join(sys.prefix, str('lib'), str('nltk_data')),
os.path.join(os.environ.get(str('APPDATA'), str('C:\\')), str('nltk_data'))
]
else:
# Common locations on UNIX & OS X:
path += [
str('/usr/share/nltk_data'),
str('/usr/local/share/nltk_data'),
str('/usr/lib/nltk_data'),
str('/usr/local/lib/nltk_data')
]

There, you can see the various possible directories for the nltk_data. If you're on Windows, chances are it is in your appdata, in the local directory. To get there, you will want to open your file browser, go to the top, and type in %appdata%

Next click on roaming, and then find the nltk_data directory. In there, you will have your corpora file. The full path is something like:

corpora在windows的路径
C:\Users\yourname\AppData\Roaming\nltk_data\corpora

语料库包括书籍,聊天记录,电影影评

Within here, you have all of the available corpora, including things like books, chat logs, movie reviews, and a whole lot more.

Now, we're going to talk about accessing these documents via NLTK.
As you can see, these are mostly text documents, so you could just use
normal Python code to open and read documents. That said, the NLTK
module has a few nice methods for handling the corpus, so you may find
it useful to use their methology. Here's an example of us opening the
Gutenberg Bible, and reading the first few lines:

古腾堡圣经(Gutenberg Bible),亦称四十二行圣经, 是《圣经》拉丁文公认翻译的印刷品,由翰尼斯·古腾堡于1454年到1455年在德国美因兹(Mainz)采用活字印刷术印刷的。这个圣经是最著名的古版书,他的产生标志着西方图书批量生产的开始

# -*- coding: utf-8 -*-
"""
Spyder Editor This is a temporary script file.
""" from nltk.tokenize import sent_tokenize
from nltk.corpus import gutenberg #sample text
sample=gutenberg.raw("bible-kjv.txt")
tok=sent_tokenize(sample)
for x in range(5):
print (tok[x])

Appdata是什么意思?

意思就是说包括系统程序运行时需要的文件,不建议删除!

Appdata下有三个子文件夹local,locallow,roaming,当你解压缩包时如果不指定路径,系统就把压缩包解到local\temp文件夹下,存放了一些解压文件,
安装软件时就从这里调取数据特别是一些制图软件,体积非常大,占用很多空间。locallow是用来存放共享数据,这两个文件夹下的文件就用优化大师清理,一般都可以清理无用的文件。
roaming文件夹也是存放一些使用程序后产生的数据文件,
如 空间听音乐,登入 的号码等而缓存的一些数据,这些数据优化大师是清理不掉的,
可以打开roaming文件夹里的文件全选定点击删除,删除不掉的就选择跳过,不过当你再使用程序时,这个文件夹又开始膨胀,又会缓存数据.
from nltk.tokenize import sent_tokenize, PunktSentenceTokenizer
from nltk.corpus import gutenberg # sample text
sample = gutenberg.raw("bible-kjv.txt") tok = sent_tokenize(sample) for x in range(5):
print(tok[x])

One of the more advanced data sets in here is "wordnet." Wordnet is a collection of words, definitions, examples of their use, synonyms, antonyms, and more. We'll dive into using wordnet next.

自然语言20_The corpora with NLTK的更多相关文章

  1. 自然语言处理(1)之NLTK与PYTHON

    自然语言处理(1)之NLTK与PYTHON 题记: 由于现在的项目是搜索引擎,所以不由的对自然语言处理产生了好奇,再加上一直以来都想学Python,只是没有机会与时间.碰巧这几天在亚马逊上找书时发现了 ...

  2. 自然语言23_Text Classification with NLTK

    QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/text-classification-nltk-tutorial/?compl ...

  3. 自然语言19.1_Lemmatizing with NLTK(单词变体还原)

    QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/lemmatizing-nltk-tutorial/?completed=/na ...

  4. 自然语言14_Stemming words with NLTK

    https://www.pythonprogramming.net/stemming-nltk-tutorial/?completed=/stop-words-nltk-tutorial/ # -*- ...

  5. 自然语言13_Stop words with NLTK

    https://www.pythonprogramming.net/stop-words-nltk-tutorial/?completed=/tokenizing-words-sentences-nl ...

  6. 自然语言处理2.1——NLTK文本语料库

    1.获取文本语料库 NLTK库中包含了大量的语料库,下面一一介绍几个: (1)古腾堡语料库:NLTK包含古腾堡项目电子文本档案的一小部分文本.该项目目前大约有36000本免费的电子图书. >&g ...

  7. python自然语言处理函数库nltk从入门到精通

    1. 关于Python安装的补充 若在ubuntu系统中同时安装了Python2和python3,则输入python或python2命令打开python2.x版本的控制台:输入python3命令打开p ...

  8. Python自然语言处理实践: 在NLTK中使用斯坦福中文分词器

    http://www.52nlp.cn/python%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86%E5%AE%9E%E8%B7%B5-% ...

  9. 推荐《用Python进行自然语言处理》中文翻译-NLTK配套书

    NLTK配套书<用Python进行自然语言处理>(Natural Language Processing with Python)已经出版好几年了,但是国内一直没有翻译的中文版,虽然读英文 ...

随机推荐

  1. Linux 使用 iptables屏蔽IP段

    netfilter/iptables IP 信息包过滤系统是一种功能强大的工具,可用于添加.编辑和除去规则,这些规则是在做信息包过滤决定时,防火墙所遵循和组成的规则.这些规则存储在专用的信息包过滤表中 ...

  2. 【原创】解决jquery在ie中不能解析字符串类型xml结构的xml字符串的问题

    $.fn.extend({ //此方法解决了ie中jquery不识别非xml的类型的xml字符串的问题 tony tan findX: function (name) { if (this & ...

  3. less 学习 (计划终于执行了啊,不再拖延了)

    1.less是什么? 答:将CSS赋予动态语言的特性,   变量,继承,运算,函数. (less就是一个用js实现的CSS解析器,运行要依赖js引擎). 2.运行原理: 按照指定语法规则写好less文 ...

  4. Dubbo系列(3)_官方Demo说明

    一.本文目的     通过Dubbo的官方Demo介绍,学会搭建一个简单的Dubbo程序,包括服务端.客户端.接口等. Demo地址:https://github.com/alibaba/dubbo/ ...

  5. Maven-常用命令

    mvn archetype:create :创建 Maven 项目 mvn compile :编译源代码 mvn deploy 发布项目 mvn test-compile :编译测试代码 mvn te ...

  6. 用MathType编辑横三角形的方法

    如果常常接触数学公式,你会发现同一个符号如果变换方向使用就可以代表不同的数学含义,这是非常常见的一种数学现象了.对于这种情况在数学公式编辑器中,我们可以使用不同的模板来进行编辑.比如横着的三角形符号, ...

  7. Python之几种重要的基本类型:元组,列表,字典,字符串,集合

    写在前面:重点讲解元组,列表,字典相关概念和常用操作. 一.元组(tuple) 1.特性:不可更改的数据序列.[理解:一旦创建元组,则这个元组就不能被修改,即不能对元组进行更新.增加.删除操作] 2. ...

  8. 算法与数据结构之交换(SWAP)排序

    #include<stdio.h> #include<stdlib.h> void swap(int x,int y); void swap_p(int *px,int *py ...

  9. bzoj4403: 序列统计

    我们很容易发现答案是C(R-L+N+1,N)-1 然后用一下lucas定理就行了 #include <iostream> #include <cstdio> #include ...

  10. 【BZOJ-1324】Exca王者之剑 最小割

    1324: Exca王者之剑 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 483  Solved: 248[Submit][Status][Disc ...