【bzoj3110】 Zjoi2013—K大数查询
http://www.lydsy.com/JudgeOnline/problem.php?id=3110 (题目链接)
题意
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c;如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Solution
整体二分入门题。
对于一段操作,我们二分一个答案mid,将修改操作中加入的数c大于等于mid的操作执行(用树状数组维护一段区间中大于等于mid的数的个数)。然后对于询问判断c是否大于等于已经加入的大于等于mid的数的个数,然后不断递归下去。
细节
第K大的二分写的我心慌,整个都是反过来的。。
代码
// bzoj3110
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define MOD 100000000
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=50010;
struct data {int t,l,r,k,id;}a[maxn],tr[maxn],tl[maxn];
LL c1[maxn],c2[maxn];
int ans[maxn],n,m; int lowbit(int x) {return x&-x;}
LL query(int x) {
LL res=0;
for (int i=x;i;i-=lowbit(i)) res+=(x+1)*c1[i]-c2[i];
return res;
}
void add(int x,int val) {
for (int i=x;i<=n;i+=lowbit(i)) c1[i]+=val,c2[i]+=(LL)x*val;
}
void solve(int L,int R,int l,int r) {
if (L>R) return;
if (l==r) {
for (int i=L;i<=R;i++) ans[a[i].id]=l;
return;
}
int mid=(l+r+1)>>1,ll=0,rr=0,fl=0,fr=0;
for (int i=L;i<=R;i++) {
if (a[i].t==1) {
if (a[i].k>=mid) add(a[i].l,1),add(a[i].r+1,-1),tr[++rr]=a[i];
else tl[++ll]=a[i];
}
else {
LL x=query(a[i].r)-query(a[i].l-1);
if (x>=a[i].k) tr[++rr]=a[i],fr=1;
else a[i].k-=x,tl[++ll]=a[i],fl=1;
}
}
for (int i=L;i<=R;i++) if (a[i].t==1 && a[i].k>=mid) add(a[i].l,-1),add(a[i].r+1,1);
for (int i=1;i<=ll;i++) a[L+i-1]=tl[i];
for (int i=1;i<=rr;i++) a[L+ll+i-1]=tr[i];
if (fl) solve(L,L+ll-1,l,mid-1);
if (fr) solve(L+ll,R,mid,r);
}
int main() {
scanf("%d%d",&n,&m);
int tot=0;
for (int i=1;i<=m;i++) {
scanf("%d%d%d%d",&a[i].t,&a[i].l,&a[i].r,&a[i].k);
if (a[i].t==2) a[i].id=++tot;
}
solve(1,m,1,n);
for (int i=1;i<=tot;i++) printf("%d\n",ans[i]);
return 0;
}
【bzoj3110】 Zjoi2013—K大数查询的更多相关文章
- BZOJ3110[Zjoi2013]K大数查询(树状数组+整体二分)
3110 [Zjoi2013]K大数查询 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a ...
- BZOJ3110 [Zjoi2013]K大数查询 树套树 线段树 整体二分 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3110 题意概括 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位 ...
- BZOJ3110: [Zjoi2013]K大数查询
喜闻乐见的简单树套树= =第一维按权值建树状数组,第二维按下标建动态开点线段树,修改相当于第二维区间加,查询在树状数组上二分,比一般的线段树还短= =可惜并不能跑过整体二分= =另外bzoj上的数据有 ...
- [BZOJ3110][ZJOI2013]K大数查询(整体二分)
BZOJ Luogu sol 整体二分,其实很简单的啦. 对所有询问二分一个答案mid,把所有修改操作中数字大于mid的做一个区间覆盖(区间加1) 查询就是区间查询 然后左右分一分即可 注意是第k大 ...
- BZOJ3110[Zjoi2013]K大数查询——权值线段树套线段树
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...
- bzoj3110: [Zjoi2013]K大数查询 【树套树,标记永久化】
//========================== 蒟蒻Macaulish:http://www.cnblogs.com/Macaulish/ 转载要声明! //=============== ...
- bzoj3110 [Zjoi2013]K大数查询——线段树套线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3110 外层权值线段树套内层区间线段树: 之所以外层权值内层区间,是因为区间线段树需要标记下传 ...
- bzoj3110: [Zjoi2013]K大数查询 【cdq分治&树套树】
模板题,折腾了许久. cqd分治整体二分,感觉像是把询问分到答案上. #include <bits/stdc++.h> #define rep(i, a, b) for (int i = ...
- BZOJ3110:[ZJOI2013]K大数查询(整体二分)
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- 【树套树】bzoj3110 [Zjoi2013]K大数查询
题解很多,实现起来以外地简洁.内层的区间线段树上用了标记永久化. #include<cstdio> using namespace std; #define N 50001 struct ...
随机推荐
- GNU Trove trove4j
GNU Trove (http://trove4j.sourceforge.net/) 是一个Java 集合类库.在某些场景下,Trove集合类库提供了更好的性能,而且内存使用更少.以下是Trove中 ...
- 在ESXi 5.x之间冷迁移虚机
试过几种不同的方法都不成功, 直接用VMware vCenter Converter Standalone Client迁移, 会出现task中的source与job中的source不一致的情况, 使 ...
- Linux 网络编程详解七(并发僵尸进程处理)
在上一篇程序框架中,解决了子进程退出,父进程继续存在的功能,但是多条客户端连接如果同一时间并行退出,导致服务器端多个子进程同一时间全部退出,而SIGCHLD是不可靠信号,同时来多条信号可能无法处理,导 ...
- node基础03:使用函数
1.使用函数 //server.js var http = require("http"); var output = require("./output"); ...
- 《深入理解Bootstrap》勘误
感谢大家 感谢大家仔细阅读本书,并给本书指出了那么多的错误,下次重印时,一定会修正. 勘误列表 ID 发行人 章节 原文 更新文 备注 1 剑衣清风(微博) 1.5选择器(p7) [att$=valu ...
- JSP中的Servlet及Filter
asp.net中,如果开发人员想自己处理http请求响应,可以利用HttpHandler来满足这一要求:类似的,如果要拦截所有http请求,可以使用HttpMoudle.java的web开发中,也有类 ...
- 韩国网页设计资料《网页设计大师2》JPG+PSD+TXT等 73.89G 百度云下载
< 网页设计大师2 >超越第一代版本,提供更新更精美的网页素材模板.全部由国际顶级设计师精选打造,完全展示走在潮流 之前的设计风格.是网页设计师/UI交互界面设计师必备工具. < 网 ...
- JavaScript中的类型转换(二)
说明: 本篇主要讨论JavaScript中各运算符对运算数进行的类型转换的影响,本文中所提到的对象类型仅指JavaScript预定义的类型和程序员自己实现的对象,不包括宿主环境定义的特殊对象(比如浏览 ...
- WPF 小技巧
在使用mvvm模式开发时,对于Command的绑定是一件很伤脑筋的事情,尽管有强大的Blend类库支持: xmlns:Custom="http://www.galasoft.ch/mvvml ...
- 误人子弟的网络,谈谈HTTP协议中的短轮询、长轮询、长连接和短连接
引言 最近刚到公司不到一个月,正处于熟悉项目和源码的阶段,因此最近经常会看一些源码.在研究一个项目的时候,源码里面用到了HTTP的长轮询.由于之前没太接触过,因此LZ便趁着这个机会,好好了解了一下HT ...