状态由\(从前往后排好的长度\)和\(排好的团队\)决定,\(DP\)方程挺有思考价值的。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long //#define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; int num[21], sum[100007][21];
int bin[21];
int f[(1 << 20) + 7]; int main(){
int n, m;
io >> n >> m;
R(i,1,n){
int x;
io >> x;
R(j,1,m) sum[i][j] = sum[i - 1][j];
++num[x];
++sum[i][x];
} bin[1] = 1;
R(i,2,m) bin[i] = bin[i - 1] << 1; Fill(f, 0x3f3f3f3f);
f[0] = 0; int maxx = (1 << m) - 1;
R(i,0,maxx){
int len = 0;
R(j,1,m){
if(i & bin[j]){
len += num[j];
}
}
R(j,1,m){
if(i & bin[j]){
f[i] = Min(f[i], f[i ^ bin[j]] + num[j] - (sum[len][j] - sum[len - num[j]][j]));
}
}
} printf("%d", f[maxx]); return 0;
}

Luogu3694 邦邦的大合唱站队 (状压DP)的更多相关文章

  1. P3694 邦邦的大合唱站队 (状压DP)

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  2. 洛谷 P3694 邦邦的大合唱站队 状压DP

    题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...

  3. P3694 邦邦的大合唱站队/签到题(状压dp)

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  4. 洛谷P3694 邦邦的大合唱站队【状压dp】

    状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...

  5. Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925

    题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...

  6. [luoguP3694] 邦邦的大合唱站队/签到题(状压DP)

    传送门 来自kkk的题解: 70分做法:枚举每个学校顺序,暴力. 100分:状压dp.从队列头到尾DP, 状态:f[i]表示i状态下最小的出列(不一致)的个数. 比如f[1101]表示从头到位为1/3 ...

  7. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  8. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  9. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  10. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

随机推荐

  1. SpirngBoot 错误(1)

    对于出现该错: Error starting ApplicationContext. To display the conditions report re-run your application ...

  2. ML第3周学习小结

    本周收获 总结一下本周学习内容: 1.学习了<深入浅出Pandas>的第五章:Pandas高级操作的三个内容 复杂查询 数据类型转换 数据排序 我的博客链接: Pandas复杂查询.数据类 ...

  3. poj1475 -- Pushing Boxes

    这道题其实挺有趣 的,这让我想起小时候诺基亚手机上的推箱子游戏(虽然一点也不好玩) (英文不好-->)  题意翻译: 初始人(S),箱子(B),目的地(T)用人把箱子推到 T最小步数及其路径(满 ...

  4. ELK 是什么?

    E指的是ElasticSearch Elasticsearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch ...

  5. python+selenium 自动化测试——显式等待详解

    1.前言 之前有提到过等待函数,等待函数分为:强制等待(sleep).隐式等待(implicitly_wait),显示等待(WebDriverWait),这次以显示等待方式专门做一次总结,因为我个人是 ...

  6. 2021.04.03【NOIP提高B组】模拟 总结

    T1 题目大意:求最小的 \(n\in[0,lim]\) 使得区间 \([L,R]\) 在线段树建树 \(build(0,n)\) 的区间内 考场时想到了正解,结果推式子退错了... 其实就是从下往上 ...

  7. 【抬杠C#】如何实现接口的base调用

    背景 在三年前发布的C#8.0中有一项重要的改进叫做接口默认实现,从此以后,接口中定义的方法可以包含方法体了,即默认实现.不过对于接口的默认实现,其实现类或者子接口在重写这个方法的时候不能对其进行ba ...

  8. 多路分支、for循环

    多路分支 多路分支也叫做switch语句,它的格式: switch (控制表达式){ case 条件: 输出....} switch 可以看成一种跳转,每当我们满足跳转就会跳转到响应的位置,接下我们写 ...

  9. 轻量级多级菜单控制框架程序(C语言)

    1.前言 作为嵌入式软件开发,可能经常会使用命令行或者显示屏等设备实现人机交互的功能,功能中通常情况都包含 UI 菜单设计:很多开发人员都会有自己的菜单框架模块,防止重复造轮子,网上有很多这种菜单框架 ...

  10. SAP 定义用户组

    SUGR,可进行创建.查看.删除等维护性操作,并可指定本组的用户