题目描述

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

输入格式

从文件prog.in中读入数据。

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:

第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若�e=0,则该约束条件为xi≠xj;

输出格式

输出到文件 prog.out 中。

输出文件包括t行。

输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。

输入输出样例

输入 #1复制

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
输出 #1复制

NO
YES
输入 #2复制

2
3
1 2 1
2 3 1
3 1 1
4
1 2 1
2 3 1
3 4 1
1 4 0
输出 #2复制

YES
NO

说明/提示

【样例解释1】

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。

【样例说明2】

在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。

在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。

【数据范围】

注:实际上 n\le 10^6n≤106

【时限2s,内存512M】

思路:    这道题普通并查集路径压缩就行了,我们看数据范围有点大,所以再加上去重+离散化,注意是多组数据,所以数组要清零,并查集数组要清零,在for循环时,注意调用的是那个变量,弄清楚,注意函数的使用,可以先处理e==1时的,再处理e==0时的,方便判断。。

代码:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define N 5000000
using namespace std;
int t,n,fa[N],b[N],tot;
bool vis;
struct node
{
int x,y,e;
}a[N];
bool cmp(const node &a,const node &b){return a.e > b.e;}
int find(int x){ return x==fa[x] ? fa[x]: fa[x]=find(fa[x]);}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
vis=1;tot=0;
memset(fa,0,sizeof(fa));
memset(b,0,sizeof(b));
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].e);
b[++tot]=a[i].x;
b[++tot]=a[i].y;
}
sort(b+1,b+tot+1);
int len=unique(b+1,b+tot)-b;
for(int i=1;i<=n;i++)
{
a[i].x=lower_bound(b+1,b+len,a[i].x) - b;
a[i].y=lower_bound(b+1,b+len,a[i].y) - b;
}
for(int i=1;i<=len;i++)fa[i]=i;
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
{
int x1=find(a[i].x);
int y1=find(a[i].y);
if(a[i].e)
{
fa[x1]=y1;
}
else
{
if(x1==y1)
{
vis=0;
break;
}
}
}
if(!vis)printf("NO\n");
else printf("YES\n");
}
return 0;
}

  感谢 ----离殇

【luoguP1955 】[NOI2015]程序自动分析--普通并查集的更多相关文章

  1. [NOI2015]程序自动分析(并查集,离散化)

    [NOI2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,-代表程序中出现的 ...

  2. [NOI2015]程序自动分析(并查集)

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变 ...

  3. 【bzoj4195】[Noi2015]程序自动分析 离散化+并查集

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量 ...

  4. bzoj 4195: [Noi2015]程序自动分析【并查集】

    等于有传递性,所以hash一下把等于用并查集连起来,然后再判断不等于是否合法即可 #include<iostream> #include<cstdio> #include< ...

  5. P1955 [NOI2015]程序自动分析[离散化+并查集]

    大水题一道,不明白为什么你谷评了个蓝.一看就是离散化,先去满足相等的条件,相等即为两点联通,或者说在同一个集合内.再看不相等,只有两元素在同一集合才不满足.裸的disjoint-set直接上,常数巨大 ...

  6. 【BZOJ4195】【NOI2015】程序自动分析(并查集)

    [BZOJ4195][NOI2015]程序自动分析(并查集) 题面 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设 ...

  7. NOI2015 洛谷P1955 程序自动分析(并查集+离散化)

    这可能是我目前做过的最简单的一道noi题目了...... 先对e=1的处理,用并查集:再对e=0查询,如果这两个在同一集合中,则为""NO",最后都满足的话输出" ...

  8. BZOJ4195 [Noi2015]程序自动分析(离散化+并查集)

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 689  Solved: 296 [Submit][Sta ...

  9. 【BZOJ4195】[Noi2015]程序自动分析 并查集

    [BZOJ4195][Noi2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3 ...

随机推荐

  1. fiddler笔记:状态面板

    Capturing 指示Fiddler是否开启抓包. Process-based Filter 显示Fiddler当前正在捕获的流量进程类型点击面板可以显示进程类型的过滤选项菜单 Automatic ...

  2. 用bisect来管理已排序的序列

    bisect 模块包含两个主要函数,bisect 和 insort,两个函数都利用二分查找算法来在有序序列中查找或插入元素. 2.8.1 用bisect来搜索 bisect(haystack, nee ...

  3. 【背包问题】PACKING

    题目描述 It was bound to happen.  Modernisation has reached the North Pole.  Faced with escalating costs ...

  4. java中锁的应用

    锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized(重量级) 和 ReentrantLock(轻量级)等等 ) .这些已经写好提供的锁为我们开发提供了便利. ...

  5. windows下将jar包打入maven仓库

    mvn install:install-file -DgroupId=org.csource -DartifactId=fastdfs-client-java -Dversion=1.27 -Dpac ...

  6. Lambda表达式使用方法整理

    匿名内部类                                                                               Lambda表达式 匿名内部类  ...

  7. c++11 用户定义字面量

    c++11 用户定义字面量 #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <string> #inc ...

  8. python3.7 lxml4.2.5 etree xpath 的使用

    #2019年10月14日11:08:49 from lxml import html etree = html.etree html = etree.HTML(response_dl.content) ...

  9. js重点——作用域——作用域分类(三)

    一.作用域可以分为全局作用域,局部作用域(函数作用域)和块级作用域. 1.全局作用域 代码在程序中的任何位置都能被访问到,window对象的内置属性都拥有全局作用域. <script> v ...

  10. 去掉行尾的^M

    1. 处理掉行尾的^M 在windos下进行linux内核驱动编写,调试成功后需要集成到内核代码中去,所以会通过虚拟机共享文件夹拷贝到内核对应目录,这时候看源码文件还是没有异常的. 当对该文件进行回车 ...