题目描述

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

输入格式

从文件prog.in中读入数据。

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:

第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若�e=0,则该约束条件为xi≠xj;

输出格式

输出到文件 prog.out 中。

输出文件包括t行。

输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。

输入输出样例

输入 #1复制

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
输出 #1复制

NO
YES
输入 #2复制

2
3
1 2 1
2 3 1
3 1 1
4
1 2 1
2 3 1
3 4 1
1 4 0
输出 #2复制

YES
NO

说明/提示

【样例解释1】

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。

【样例说明2】

在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。

在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。

【数据范围】

注:实际上 n\le 10^6n≤106

【时限2s,内存512M】

思路:    这道题普通并查集路径压缩就行了,我们看数据范围有点大,所以再加上去重+离散化,注意是多组数据,所以数组要清零,并查集数组要清零,在for循环时,注意调用的是那个变量,弄清楚,注意函数的使用,可以先处理e==1时的,再处理e==0时的,方便判断。。

代码:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define N 5000000
using namespace std;
int t,n,fa[N],b[N],tot;
bool vis;
struct node
{
int x,y,e;
}a[N];
bool cmp(const node &a,const node &b){return a.e > b.e;}
int find(int x){ return x==fa[x] ? fa[x]: fa[x]=find(fa[x]);}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
vis=1;tot=0;
memset(fa,0,sizeof(fa));
memset(b,0,sizeof(b));
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].e);
b[++tot]=a[i].x;
b[++tot]=a[i].y;
}
sort(b+1,b+tot+1);
int len=unique(b+1,b+tot)-b;
for(int i=1;i<=n;i++)
{
a[i].x=lower_bound(b+1,b+len,a[i].x) - b;
a[i].y=lower_bound(b+1,b+len,a[i].y) - b;
}
for(int i=1;i<=len;i++)fa[i]=i;
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
{
int x1=find(a[i].x);
int y1=find(a[i].y);
if(a[i].e)
{
fa[x1]=y1;
}
else
{
if(x1==y1)
{
vis=0;
break;
}
}
}
if(!vis)printf("NO\n");
else printf("YES\n");
}
return 0;
}

  感谢 ----离殇

【luoguP1955 】[NOI2015]程序自动分析--普通并查集的更多相关文章

  1. [NOI2015]程序自动分析(并查集,离散化)

    [NOI2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,-代表程序中出现的 ...

  2. [NOI2015]程序自动分析(并查集)

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变 ...

  3. 【bzoj4195】[Noi2015]程序自动分析 离散化+并查集

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量 ...

  4. bzoj 4195: [Noi2015]程序自动分析【并查集】

    等于有传递性,所以hash一下把等于用并查集连起来,然后再判断不等于是否合法即可 #include<iostream> #include<cstdio> #include< ...

  5. P1955 [NOI2015]程序自动分析[离散化+并查集]

    大水题一道,不明白为什么你谷评了个蓝.一看就是离散化,先去满足相等的条件,相等即为两点联通,或者说在同一个集合内.再看不相等,只有两元素在同一集合才不满足.裸的disjoint-set直接上,常数巨大 ...

  6. 【BZOJ4195】【NOI2015】程序自动分析(并查集)

    [BZOJ4195][NOI2015]程序自动分析(并查集) 题面 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设 ...

  7. NOI2015 洛谷P1955 程序自动分析(并查集+离散化)

    这可能是我目前做过的最简单的一道noi题目了...... 先对e=1的处理,用并查集:再对e=0查询,如果这两个在同一集合中,则为""NO",最后都满足的话输出" ...

  8. BZOJ4195 [Noi2015]程序自动分析(离散化+并查集)

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 689  Solved: 296 [Submit][Sta ...

  9. 【BZOJ4195】[Noi2015]程序自动分析 并查集

    [BZOJ4195][Noi2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3 ...

随机推荐

  1. ASP.NET跨平台、分布式技术架构技术栈概览 (迄今为止最全的.NET技术栈)

    今天有个学技术的小兄弟问我,现在这么多的技术我要学哪个?我说你根据岗位来学,学好了哪一门都可以在社会上立足,如今已经早已不是我们当年学习IT时候那么单纯了,给他讲了很多,发现现在的技术栈变得层次复杂且 ...

  2. 以前面试 经常写这种 问掉的 copy 还是 =

    get的时候,生成的  那个对象赋值给aa 生成的对象在这条语句完  就析构了: https://blog.csdn.net/qq_31759205/article/details/80544468h ...

  3. MyBatis 源码篇-SQL 执行的流程

    本章通过一个简单的例子,来了解 MyBatis 执行一条 SQL 语句的大致过程是怎样的. 案例代码如下所示: public class MybatisTest { @Test public void ...

  4. github骚操作

    限制搜索 in关键词限制搜索范围 命令 说明 xxx in:name 项目名包含xxx的 xxx in:description 项目描述包含xxx的 xxx in:readme 项目的readme文件 ...

  5. Python实现字符的冒泡排序——说实话,两个数兑换的方法震惊了我,一天比一天感受到了Python的强大

    import random M= lettList=[] for i in range(M): lettList.append(chr(random.randrange(,))) for lett i ...

  6. IOS 跳转页面

    1. 跳转界面,关闭自身 LoginViewController *loginViewController = [[LoginViewController alloc]initWithNibName: ...

  7. 基于SDP的提议/应答(offer/answer)模型简介

    1.引入 在松耦合会议中,会话参数完全由会议创建者来确定,参与者能做的仅仅是根据这些会话参数来加入会议(当然也可以选择不加入).这种情况下,主要要做的就是会话描述,在这里SDP本身就足够了. 但是在更 ...

  8. 基于【 springBoot +springCloud+vue 项目】二 || 后端框架详解

     前言 在上一篇中,我们搭建了一个-API服务提供接口模块,目的为了提供了消费方进行调用.为什么不直接在service层直接提供调用接口,而是重新创建一个接口层模块?首先我们需要对Feign有所了解. ...

  9. ES6入门十:iterator迭代器

    迭代模式 ES6迭代器标准化接口 迭代循环 自定义迭代器 迭代器消耗 一.迭代模式 迭代模式中,通常有一个包含某种数据集合的对象.该数据可能存在一个复杂数据结构内部,而要提供一种简单的方法能够访问数据 ...

  10. SpringBoot实现定时器定时处理任务

    最近在项目中遇到了一个问题, 对于新建的活动, 活动设置了开始时间和结束时间, 也就是数据库中的一个状态码的改变而已. 但是,这里就有问题了, 如何去实现到时间更改活动状态呢? 1. 刚开始的时候,我 ...