bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 559 Solved: 325
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2
Sample Output
HINT
Source
容斥一下让哪几个公司来修就可以了,然后每次矩阵树定理求一下方案树就可以了。
这里是直接高斯消元的,没有辗转相除的形式,但是好像矩阵树是保证还是桌面回事,不需要的。
#pragma GCC optimize(2)
#pragma G++ optimize(2)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring> #define ll long long
#define N 22
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n;
int a[N][N],f[N][N],ans;
int cnt,hed[N];
struct Node
{
int x,y,nxt;
}e[]; void add(int u,int x,int y)
{
e[++cnt].x=x;
e[cnt].y=y;
e[cnt].nxt=hed[u];
hed[u]=cnt;
}
int cal(int num)//矩阵树定理是每个点的度,若x-y有边则x,y -1,y,x -1然后消去一行,下三角消元
{
//这里好处是num为n-1了,已经减去一行了。
for (int i=;i<=num;i++)
for (int j=;j<=num;j++)
a[i][j]=f[i][j];
int ans=;
for (int i=;i<=num;i++)
{
for (int j=i+;j<=n;j++)
while(a[j][i])
{
int t=a[i][i]/a[j][i];
for (int k=i;k<=n;k++)a[i][k]=(a[i][k]-(ll)a[j][k]*t%mod)%mod;
for (int k=i;k<=n;k++)swap(a[i][k],a[j][k]);
ans=-ans;//ans去反是因为斜对角线上负数的个数
}
if(!a[i][i])return ;
ans=(ll)ans*a[i][i]%mod;
}
return ans;
}
void dfs(int x,int y)
{
if (x==n)//就n-1个人
{
(ans+=y*cal(n-))%=mod;
return;
}
dfs(x+,y); for (int i=hed[x];i!=-;i=e[i].nxt)
{
int u=e[i].x,v=e[i].y;
f[u][u]--,f[v][v]--,f[u][v]++,f[v][u]++;
}
dfs(x+,-y);
for (int i=hed[x];i!=-;i=e[i].nxt)
{
int u=e[i].x,v=e[i].y;
f[u][u]++,f[v][v]++,f[u][v]--,f[v][u]--;
}
}
int main()
{
memset(hed,-,sizeof(hed));
n=read();
for (int i=;i<n;i++)
{
int number=read();
for (int j=;j<=number;j++)
{
int x=read(),y=read();
add(i,x,y);
f[x][x]++,f[y][y]++,f[x][y]--,f[y][x]--;
}
}
dfs(,);
printf("%d\n",(ans%mod+mod)%mod);
}
bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥的更多相关文章
- [SHOI2016] 黑暗前的幻想乡 - 矩阵树定理,容斥
#include <bits/stdc++.h> using namespace std; #define int long long const int N = 20; const in ...
- bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)
bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...
- Luogu P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理+容斥原理
真是菜到爆炸....容斥写反(反正第一次写qwq) 题意:$n-1$个公司,每个公司可以连一些边,求每个边让不同公司连的生成树方案数. 矩阵树定理+容斥原理(注意到$n$不是很大) 枚举公司参与与否的 ...
- 【BZOJ4596】【Luogu P4336】 [SHOI2016]黑暗前的幻想乡 矩阵树定理,容斥
同样是矩阵树定理的裸题.但是要解决它需要能够想到容斥才可以. \(20\)以内的数据范围一定要试试容斥的想法. #include <bits/stdc++.h> using namespa ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡
Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...
- ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
随机推荐
- Socket与ServerSocket
ServerSocket: 用于打开服务端口,等待客户端连接,运行在服务端. Socket: 用于连接指定服务器的指定端口,运行在客户端. flush是输出到缓冲区,缓冲区没满的话不发送,close的 ...
- 关于 httpUrlConnection 的 setDoOutput 与 setDoInput的区别
httpUrlConnection.setDoOutput(true) httpUrlConnection.setDoInput(true) 这两个方法在develope的httpUrlConnect ...
- C/C++ typedef
body, table{font-family: 微软雅黑} table{border-collapse: collapse; border: solid gray; border-width: 2p ...
- redis 安装实战(10步完成安装)
1 下载zip :https://redis.io/download ---->redis-4.0.6 2 上传:利用wcp 上传到/usr/local/soft/ 3 解压:tar -zv ...
- org.json.JSONObject的optXXX方法
JSONObject有很多optXXX方法,比如optBoolean,optString,optInt.... 他们的意思是:如果这个JSONObject对象,如果有返回这个属性的值,如果没有返回一个 ...
- 04_Javascript初步第二天(下)
错误对象 try{ aa();//这是一个未被定义的方法 }catch(e){ alert(e.name+":"+e.message);//输出:ReferenceError:aa ...
- awk 的 pattern(模式)
我们知道, awk程序由一系列 pattern 以及与之对应的 action 组成的 rule 组成,rule之间用";"分号隔开, 一条输入记录与 pattern 匹配则执行与之 ...
- Python类的__getitem__和__setitem__特殊方法
class testsetandget: kk = {}; def __getitem__(self, key): return self.kk[key]; ...
- 【转】wget
wget 下载整个网站,或者特定目录 需要下载某个目录下面的所有文件.命令如下 wget -c -r -np -k -L -p www.xxx.org/pub/path/ 在下载时.有用到外部域名的图 ...
- Win10下通过IIS调试ASP程序遇到的问题和解决方案
最近维护了以前别人的写的一个ASP的系统,记录一下调试过程中的问题和解决方案. 环境篇 万维网发布服务(W3SVC)已经停止 问题: 万维网发布服务(W3SVC)已经停止.除非万维网发布服务(W3SV ...