We are playing the Guess Game. The game is as follows:

I pick a number from 1 to n. You have to guess which number I picked.

Every time you guess wrong, I'll tell you whether the number I picked is higher or lower.

However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.

Example:

n = 10, I pick 8.

First round:  You guess 5, I tell you that it's higher. You pay $5.
Second round: You guess 7, I tell you that it's higher. You pay $7.
Third round: You guess 9, I tell you that it's lower. You pay $9. Game over. 8 is the number I picked. You end up paying $5 + $7 + $9 = $21.

Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.

Hint:

  1. The best strategy to play the game is to minimize the maximum loss you could possibly face. Another strategy is to minimize the expected loss. Here, we are interested in thefirst scenario.
  2. Take a small example (n = 3). What do you end up paying in the worst case?
  3. Check out this article if you're still stuck.
  4. The purely recursive implementation of minimax would be worthless for even a small n. You MUST use dynamic programming.
  5. As a follow-up, how would you modify your code to solve the problem of minimizing the expected loss, instead of the worst-case loss?

Credits:
Special thanks to @agave and @StefanPochmann for adding this problem and creating all test cases.

此题是之前那道 Guess Number Higher or Lower 的拓展,难度增加了不少,根据题目中的提示,这道题需要用到 Minimax 极小化极大算法,关于这个算法可以参见这篇讲解,并且题目中还说明了要用 DP 来做,需要建立一个二维的 dp 数组,其中 dp[i][j] 表示从数字i到j之间猜中任意一个数字最少需要花费的钱数,那么需要遍历每一段区间 [j, i],维护一个全局最小值 global_min 变量,然后遍历该区间中的每一个数字,计算局部最大值 local_max = k + max(dp[j][k - 1], dp[k + 1][i]),这个正好是将该区间在每一个位置都分为两段,然后取当前位置的花费加上左右两段中较大的花费之和为局部最大值,为啥要取两者之间的较大值呢,因为要 cover 所有的情况,就得取最坏的情况。然后更新全局最小值,最后在更新 dp[j][i] 的时候看j和i是否是相邻的,相邻的话赋为j,否则赋为 global_min。这里为啥又要取较小值呢,因为 dp 数组是求的 [j, i] 范围中的最低 cost,比如只有两个数字1和2,那么肯定是猜1的 cost 低,是不有点晕,没关系,博主继续来绕你。如果只有一个数字,那么不用猜,cost 为0。如果有两个数字,比如1和2,猜1,即使不对,cost 也比猜2要低。如果有三个数字 1,2,3,那么就先猜2,根据对方的反馈,就可以确定正确的数字,所以 cost 最低为2。如果有四个数字 1,2,3,4,那么情况就有点复杂了,策略是用k来遍历所有的数字,然后再根据k分成的左右两个区间,取其中的较大 cost 加上k。

当k为1时,左区间为空,所以 cost 为0,而右区间 2,3,4,根据之前的分析应该取3,所以整个 cost 就是 1+3=4。

当k为2时,左区间为1,cost 为0,右区间为 3,4,cost 为3,整个 cost 就是 2+3=5。

当k为3时,左区间为 1,2,cost 为1,右区间为4,cost 为0,整个 cost 就是 3+1=4。

当k为4时,左区间 1,2,3,cost 为2,右区间为空,cost 为0,整个 cost 就是 4+2=6。

综上k的所有情况,此时应该取整体 cost 最小的,即4,为最后的答案,这就是极小化极大算法,参见代码如下:

解法一:

class Solution {
public:
int getMoneyAmount(int n) {
vector<vector<int>> dp(n + , vector<int>(n + , ));
for (int i = ; i <= n; ++i) {
for (int j = i - ; j > ; --j) {
int global_min = INT_MAX;
for (int k = j + ; k < i; ++k) {
int local_max = k + max(dp[j][k - ], dp[k + ][i]);
global_min = min(global_min, local_max);
}
dp[j][i] = j + == i ? j : global_min;
}
}
return dp[][n];
}
};

下面这种是递归解法,建立了记忆数组 memo,减少了重复计算,提高了运行效率,核心思想跟上面的解法相同,参见代码如下:

解法二:

class Solution {
public:
int getMoneyAmount(int n) {
vector<vector<int>> memo(n + , vector<int>(n + , ));
return helper(, n, memo);
}
int helper(int start, int end, vector<vector<int>>& memo) {
if (start >= end) return ;
if (memo[start][end] > ) return memo[start][end];
int res = INT_MAX;
for (int k = start; k <= end; ++k) {
int t = k + max(helper(start, k - , memo), helper(k + , end, memo));
res = min(res, t);
}
return memo[start][end] = res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/375

类似题目:

Guess Number Higher or Lower

Flip Game II

Can I Win

Find K Closest Elements

参考资料:

https://leetcode.com/problems/guess-number-higher-or-lower-ii/

https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/84787/Java-DP-solution

https://leetcode.com/problems/guess-number-higher-or-lower-ii/discuss/84764/Simple-DP-solution-with-explanation~~

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Guess Number Higher or Lower II 猜数字大小之二的更多相关文章

  1. [LeetCode] 375. Guess Number Higher or Lower II 猜数字大小之二

    We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...

  2. [LeetCode] 375. Guess Number Higher or Lower II 猜数字大小 II

    We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...

  3. 375 Guess Number Higher or Lower II 猜数字大小 II

    我们正在玩一个猜数游戏,游戏规则如下:我从 1 到 n 之间选择一个数字,你来猜我选了哪个数字.每次你猜错了,我都会告诉你,我选的数字比你的大了或者小了.然而,当你猜了数字 x 并且猜错了的时候,你需 ...

  4. Leetcode: Guess Number Higher or Lower II

    e are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to guess ...

  5. 不一样的猜数字游戏 — leetcode 375. Guess Number Higher or Lower II

    好久没切 leetcode 的题了,静下心来切了道,这道题比较有意思,和大家分享下. 我把它叫做 "不一样的猜数字游戏",我们先来看看传统的猜数字游戏,Guess Number H ...

  6. [LeetCode] Guess Number Higher or Lower 猜数字大小

    We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...

  7. 【LeetCode】375. Guess Number Higher or Lower II 解题报告(Python)

    [LeetCode]375. Guess Number Higher or Lower II 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://f ...

  8. LC 375. Guess Number Higher or Lower II

    We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...

  9. leetcode 374. Guess Number Higher or Lower 、375. Guess Number Higher or Lower II

    374. Guess Number Higher or Lower 二分查找就好 // Forward declaration of guess API. // @param num, your gu ...

随机推荐

  1. ViEmu 3.6.0 过期 解除30天限制的方法

    下载:链接: http://pan.baidu.com/s/1c2HUuWw 密码: sak8 删除下面2个地方 HKEY_CLASSES_ROOT\Wow6432Node\CLSID\{B9CDA4 ...

  2. 【无私分享:ASP.NET CORE 项目实战(第六章)】读取配置文件(一) appsettings.json

    目录索引 [无私分享:ASP.NET CORE 项目实战]目录索引 简介 在我们之前的Asp.net mvc 开发中,一提到配置文件,我们不由的想到 web.config 和 app.config,在 ...

  3. C#开发微信门户及应用(34)--微信裂变红包

    在上篇随笔<C#开发微信门户及应用(33)--微信现金红包的封装及使用>介绍了普通现金红包的封装和使用,这种红包只能单独一次发给一个人,用户获取了红包就完成了,如果我们让用户收到红包后,可 ...

  4. struts2学习之旅三 权限管理和导航设计

    1,权限管理的db设计和dao实现,尽量简单快速有效: db的设计如下:权限按照角色来赋给用户: 权限对应每一个具体的功能,有菜单级别的,有导航级别的,还有页面级别的功能: 涉及到权限的敏感操作一般都 ...

  5. 9.2.3 .net core 通过TagHelper封装控件

    .net core 除了继续保留.net framework的HtmlHelper的写法以外,还提供了TagHelper和ViewComponent方式生成控件. 我们本节说的是使用TagHelper ...

  6. java List的排序

    List自定义排序 1.第一种方法,就是list中对象实现Comparable接口,重写compareTo接口, 对排序的字段进行比较.2.第二种方法,就是在重载Collections.sort方法. ...

  7. Win7系统卸载McAfee杀毒软件

    方法一.用系统正常卸载程序卸载. 首先,在服务里将McAfee相关的所有服务“禁用”. 然后, Windows“控制面板”中的“添加/删除程序”卸载 McAfee Consumer 产品. 接着,到C ...

  8. 在Thinkphp中使用AJAX实现无刷新分页

    在Thinkphp目录的Lib\ORG\Util\目录里新建AjaxPage.class.php,写入一下内容: <?php // +------------------------------ ...

  9. 如何在Node.js中合并两个复杂对象

    通常情况下,在Node.js中我们可以通过underscore的extend或者lodash的merge来合并两个对象,但是对于像下面这种复杂的对象,要如何来应对呢? 例如我有以下两个object: ...

  10. java script第一篇(按钮全选的实现)

    今天刚学了java script,记录下学习新知识的点滴.以下是操作步骤.鉴于我是初级者,如有错误,恳请读者指正.万分谢谢. 1.新建一个文档(用NotePad软件,为了使得在浏览器中打开不是乱码,在 ...