train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0;
test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g)。
如果|H|小,更易保证test(不等式右式小),难保证train(选择少);
如果|H|大,更易保证train(选择多),难保证test(不等式右式大)。
如果|H|无限呢?2Mexp(...)可能大于1了,对于概率值上限来说失去意义。那能否用个有限值代替|H|呢?
看一下2Mexp(...)这个上限的来源。
本质是求并集,但是得出2Mexp(...)这个式子是默认无交集的情况下求的并集,
实际上,A确定后,H形式也确定,
给定D,在H里存在相似的h,这些h在D上的表现一致,即存在交集,所以2Mexp(...)这个式子作为上限来说过大了。
给定D,可通过将H里相似h分到同类里(同类里h的数目可能是无限的),将|H|变为类数,就可能将无限的|H|变为有限的类数。
定义给定D下,将|H|分得的类为dichotomies,每一个dichotomy在D上表现相同。
假设D里有2个样本点,将D分为OO、OX、XO、XX的h分别归为一类,共有4类。
可以发现dichotomies的数量是依赖于具体D和H的,但是dichotomies的数量的最大值只依赖与D里样本点的个数N和H,
例如感知器算法里,N=2时,最大值不超过2的N次方,这里是4。
定义dichotomies的数量的最大值为N的成长函数,记为mH(N)。------只和H、N有关。
即给定样本数N,H里假设类数是小于等于mH(N)的。
对于2维感知机,mH(1)=2,mH(2)=4,mH(3)=8,mH(4)=14。
可以看出,成长函数可能是多项式型的(好的,能保证只要N足够大,2mH(N)exp(...)小),也可能是指数型的(坏的)。
对于2维及以上维数的感知机,成长函数是多项式型的吗?
shatter:如果H里的假设能够保证k个输入能够输出任意标签的组合,称H能shatter这k个输入。
break point k:H不能shatter这k个输入,称k为断点。
猜想,只要存在断点,就能保证成长函数是多项式型,进而保证了test。

机器学习基石:05 Training versus Testing的更多相关文章

  1. 机器学习基石 5 Training versus Testing

    机器学习基石 5 Training versus Testing Recap and Preview 回顾一下机器学习的流程图: 机器学习可以理解为寻找到 \(g\),使得 \(g \approx f ...

  2. 机器学习基石笔记:05 Training versus Testing

    train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0: test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g). 如果|H|小,更易保证t ...

  3. 05 Training versus Testing

    train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0: test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g). 如果|H|小,更易保证t ...

  4. Coursera台大机器学习课程笔记4 -- Training versus Testing

     这节的主题感觉和training,testing关系不是很大,其根本线索在于铺垫并求解一个问题:    为什么算法PLA可以正确的work?因为前面的知识告诉我们,只有当假设的个数有限的时候,我们才 ...

  5. 【Training versus Testing】林轩田机器学习基石

    接着上一讲留下的关子,机器学习是否可行与假设集合H的数量M的关系. 机器学习是否可行的两个关键点: 1. Ein(g)是否足够小(在训练集上的表现是否出色) 2. Eout(g)是否与Ein(g)足够 ...

  6. 林轩田机器学习基石课程学习笔记5 — Training versus Testing

    上节课,我们主要介绍了机器学习的可行性.首先,由NFL定理可知,机器学习貌似是不可行的.但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的.本节 ...

  7. 理解机器为什么可以学习(二)---Training versus Testing

    前边由Hoeffding出发讨论了为什么机器可以学习,主要就是在N很大的时候Ein PAC Eout,选择较小的Ein,这样的Eout也较小,但是当时还有一个问题没有解决,就是当时的假设的h的集合是个 ...

  8. 机器学习基石的泛化理论及VC维部分整理(第五讲)

    第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD   \mathcal{D} \right ]  \leq 2M \cd ...

  9. 台大《机器学习基石》课程感受和总结---Part 2 (转)

    转自:http://blog.sina.com.cn/s/blog_641289eb0101e2ld.html Part 2总结一下一个粗略的建模过程: 首先,弄清楚问题是什么,能不能用机器学习的思路 ...

随机推荐

  1. Java基础学习笔记六 Java基础语法之类和ArrayList

    引用数据类型 引用数据类型分类,提到引用数据类型(类),其实我们对它并不陌生,如使用过的Scanner类.Random类.我们可以把类的类型为两种: 第一种,Java为我们提供好的类,如Scanner ...

  2. 【Spring系列】Spring mvc整合redis(非集群)

    一.在pom.xml中增加redis需要的jar包 <!--spring redis相关jar包--> <dependency> <groupId>redis.cl ...

  3. JavaScript(第三天)【数据类型】

    学习要点: 1.typeof操作符 2.Undefined类型 3.Null类型 4.Boolean类型 5.Number类型 6.String类型 7.Object类型 ECMAScript中有5种 ...

  4. C语言使用指针变量指向字符串,对字符串进行处理后再将指针移向开头为什么不能输出?(使用Dev-c++进行编译)

    # include <stdio.h> # include <stdlib.h> int main() { char *point_1="aaaaaabbbbbbzz ...

  5. 团队作业7——第二次项目冲刺(Beta版本12.10)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:头像功能原型设计.头像裁剪功能.头像上传功能.测试 计划完成的内容:头像功能测试.bug修复 每个人的工作 (有work item 的I ...

  6. WORK

    团队展示 队伍信息 队名:小狗队 队长:刘映华(201421122021) 队员:兰运良(201421122030).郭和水(201421122017) 团队项目描述 团队项目描述是基于之前的四则运算 ...

  7. Linux下I/O多路转接之epoll(绝对经典)

    epoll 关于Linux下I/O多路转接之epoll函数,什么返回值,什么参数,我不想再多的解释,您不想移驾,我给你移来: http://blog.csdn.net/colder2008/artic ...

  8. mysql基础篇 - 数据库及表的修改和删除

    基础篇 - 数据库及表的修改和删除         修改和删除 一.实验简介 本节实验中,我们将学习并实践如何对数据库的内容做修改,删除,重命名等操作. 二.实验准备 在正式开始本实验内容之前,需要先 ...

  9. 同一个页面同时拥有collectionView和navigationBar和tabBar时可能遇到的问题

    写一个页面的时候,遇到了页面加载时候collectionView的最下面少了49个像素的位置,切换去别的页面之后,再返回,又变回正常,多方求解无果后,发现原来是系统自带的适应功能导致的,加入以下代码即 ...

  10. float、absolute、inline-block三者区别

    0.前言 float属性在css2中是一个热门的属性,被广泛应用于布局之中,同时由于不当使用float带来的问题也非常多,本文结合自己对float的理解以及实际项目中碰到float的相关问题,做一个详 ...