CF388D. Fox and Perfect Sets

题意:求最大元素\(le n\)的线性空间的个数


给神题跪了 orz


容易想到 每个线性基对应唯一的线性空间,我们可以统计满足条件的对应空间不同的线性基个数

每一位我们插入一个向量,就获得了这一位的控制权,否则这一位是自由的

因为要\(le n\),可以使用数位DP

从高位到低位考虑,设当前第i位,已经插入了j个向量

没有天际线的限制

  • 插入向量i的话,之前的向量位i必须是0,1种情况
  • 不插入向量i的话,之前的向量位i可以任选,\(2^j\)种情况

考虑天际线的限制

  • 不插入向量i,有\(2^{j-1}\)种情况可以继续顶着天际线
  • 如果a[i]==1,还有\(2^{j-1}\)种情况可以小于天际线
  • a[i]==1时可以插入向量i

然后我的转移方程写的好丑啊....然后鏼鏼鏼了一个简短的写法

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define fir first
#define sec second
const int N=40, P=1e9+7;
inline ll read() {
char c=getchar(); ll x=0, f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, f[N][N][2], a[N], len;
ll mi[N];
inline void mod(int &x) {if(x>=P) x-=P;}
int dfs(int d, int j, int sky) { //printf("dfs %d %d %d\n",d,j,sky);
if(d==0) return 1;
if(f[d][j][sky] != -1) return f[d][j][sky];
int &now = f[d][j][sky], lim = sky ? a[d] : 1;
now=0;
if(!sky) {
mod(now += mi[j] * dfs(d-1, j, 0) %P );
mod(now += dfs(d-1, j+1, 0)%P );
} else {
mod(now += (j==0 ? 1 : mi[j-1]) * dfs(d-1, j, sky && 0==lim) %P);
if(a[d]==1) mod(now += dfs(d-1, j+1, sky && 1==lim)%P ),
mod(now += (j==0 ? 0 : mi[j-1]) * dfs(d-1, j, sky && 1==lim) %P );
}
//for(int i=0; i<=lim; i++) {
// mod(now += (j==0 ? !i : mi[j-1]) * dfs(d-1, j, sky && i==lim) %P);
// if(i==1) mod(now += dfs(d-1, j+1, sky && i==lim));
//} return now;
}
int main() {
freopen("in","r",stdin);
mi[0]=1;
for(int i=1; i<=30; i++) mi[i] = (mi[i-1]<<1)%P;
n=read();
while(n) a[++len]=n&1, n>>=1;
memset(f, -1, sizeof(f));
printf("%d", dfs(len, 0, 1));
}

BZOJ CF388D. Fox and Perfect Sets [线性基 数位DP]的更多相关文章

  1. 【做题】CF388D. Fox and Perfect Sets——线性基&数位dp

    原文链接https://www.cnblogs.com/cly-none/p/9711279.html 题意:求有多少个非空集合\(S \subset N\)满足,\(\forall a,b \in ...

  2. codeforces 388D Fox and Perfect Sets(线性基+数位dp)

    #include<bits/stdc++.h> using namespace std; #define fi first #define se second #define mp mak ...

  3. 数位DP CF388D - Fox and Perfect Sets

    题目地址 一个整数perfect集合满足性质:集合中随意两个整数的异或和仍在这个集合中. 求最大数不超过K的perfect集合的个数. 每一个集合都是一个线性的向量空间. .能够通过全然的高斯消元得出 ...

  4. Codeforces 388 D. Fox and Perfect Sets

    $ >Codeforces \space 388 D.  Fox and Perfect Sets<$ 题目大意 : 定义一个完美的集合 \(S\) ,当且仅当 \(S\) 非负非空,且 ...

  5. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  6. BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基

    [题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...

  7. bzoj 4184 shallot——线段树分治+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4184 本来想了可持久化trie,不过空间是 nlogn (出一个节点的时候把 tot 复原就 ...

  8. BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)

    题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...

  9. BZOJ 2460: [BeiJing2011]元素 贪心,线性基

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 解法:从大到小排序,依次贪心的添加到当前集合就可以了,需要动态维护线性基.用拟阵证明 ...

随机推荐

  1. 2017ecjtu-summer training #2 CodeForces 608B

    B. Hamming Distance Sum time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  2. .NET MongoDB Driver GridFS 2.2原理及使用示例

    一.API解读 1 GridFSBucketOptions 1)public string BucketName { get; set; } 获取或设置bucket名称 2)public int Ch ...

  3. SQL强化(一)保险业务

    保险业务 : 表结构 : sql语句 : /*1. 根据投保人电话查询出投保人 姓名 身份证号 所有保单 编号 险种 缴费类型*/SELECTt2.cust_name,t2.idcard,t4.pro ...

  4. JS中使用正则表达式替换对象里的大小写

      function parse(obj){ var str = JSON.stringify(obj); var dataObj = str.replace(/Name/g, "name& ...

  5. Web前端性能优化——如何提高页面加载速度

    前言:  在同样的网络环境下,两个同样能满足你的需求的网站,一个"Duang"的一下就加载出来了,一个纠结了半天才出来,你会选择哪个?研究表明:用户最满意的打开网页时间是2-5秒, ...

  6. WEBZIP为什么打不开网页

    先试三个办法 一.打开IE,点工具,点internet选项,点高级,点恢复默认设置,点保存,退出,重新打开IE 二.打开IE,刷新五次以上 三.打开IE,点工具,点internet选项,点删除文件,点 ...

  7. 邓_ Php·魔术方法

    ================================================ 1.__tostring()   用于定义输出对象引用时调用  常用于打印一些对象的信息 必须有返回值 ...

  8. 常用SQL笔记总结

    DDL(data definition language)创建和管理表 1.创建表 1.直接创建 例如: create table emp( name varchar(20), salary int ...

  9. TCP socket 多线程 并发服务器(发送)与客户端(接收)

    实现功能:Ubuntu上通过多线程实现服务器并发给客户端发送文件,携带包头,根据包头信息命名新文件.适用于短连接. 问题小结: 01. 调用嵌套在结构体中的结构体char 数组成员时,需要动态分配内存 ...

  10. impala集成sentry

    1.安装配置sentry 详细步骤见上一篇安装配置sentry. 2.配置impala 注:以下配置未集成kerberos安全认证 在/etc/imapla/conf目录下创建sentry-site. ...