思路:枚举点t,寻找满足条件的点t';

计sum[i]为前i项合,平均值即为sum[t]-sum[t'-1]/t-t'+1

设(Pi=(i,Si),表示点在s中的位置,那么就可以画出坐标图,问题就转化为斜率最大;

于是画图分析。

几个点之间只有上凸下凸两种情况,取3个点为符合条件(t-t'>=L)的t',分析后得结论上凸点在各种情况(t)下都要舍去;

于是就可以不断更新,更新策略为新插入点,删除掉原来是下凸点,插入后变成上凸点的点;

随着t增大,t'只会增大(t增大,pt增大),所以增加到斜率变小时即可停止;

而且对于某个Pt,选好切点后,对于之后的Pt,之前的点Pt'都不会用到了,于是不用从头枚举

代码

#include<cstdio>
using namespace std; const int maxn = + ; int n, L;
char s[maxn];
int sum[maxn], p[maxn]; // average of i~j is (sum[j]-sum[i-1])/(j-i+1) // compare average of x1~x2 and x3~x4 //x1-x2的斜率大于x3-x4返回1
int compare_average(int x1, int x2, int x3, int x4) {
return (sum[x2]-sum[x1-]) * (x4-x3+) - (sum[x4]-sum[x3-]) * (x2-x1+);
} int main() {
int T;
scanf("%d", &T); while(T--) {
scanf("%d%d%s", &n, &L, s+); sum[] = ;
for(int i = ; i <= n; i++) sum[i] = sum[i-] + s[i] - ''; int ansL = , ansR = L; // p[i..j) is the sequence of candidate start points
int i = , j = ; //j是起始点中最右边的点,p[j]代表那个点在序列中的位置
for (int t = L; t <= n; t++) { // end point ,枚举的右端点
while (j-i > && compare_average(p[j-], t-L, p[j-], t-L) >= ) j--; // remove concave points
//t-l是新加的点(上一步t-l+1,而for循环t++了),j-1(上一步j++了)是原来最右边的点,从最右边开始判断是否上凸 p[j++] = t-L+; // new candidate //注意上一个循环已经去掉了右面的上凸点(j--) while (j-i > && compare_average(p[i], t, p[i+], t) <= ) i++; // update tangent point切点 int c = compare_average(p[i], t, ansL, ansR); //更新
if (c > || c == && t - p[i] < ansR - ansL) {
ansL = p[i]; ansR = t;
}
}
printf("%d %d\n", ansL, ansR);
}
return ;
}

uva 1451 数形结合的更多相关文章

  1. UVa 1451 (数形结合 单调栈) Average

    题意: 给出一个01串,选一个长度至少为L的连续子串,使得串中数字的平均值最大. 分析: 能把这道题想到用数形结合,用斜率表示平均值,我觉得这个想法太“天马行空”了 首先预处理子串的前缀和sum,如果 ...

  2. UVA 1451 Average平均值 (数形结合,斜率优化)

    摘要:数形结合,斜率优化,单调队列. 题意:求一个长度为n的01串的子串,子串长度至少为L,平均值应该尽量大,多个满足条件取长度最短,还有多个的话,取起点最靠左. 求出前缀和S[i],令点Pi表示(i ...

  3. 紫书 例题8-9 UVa 1451 (数形结合)

    这道题用了数形结合, 真的牛逼, 完全想到不到还可以这么做 因为题目求的是平均值, 是总数除以个数, 这个时候就可以联系 到斜率, 也就是说转化为给你一堆点, 让你求两点之间的最大斜率 要做两个处理 ...

  4. 【UVA 1451】Average

    题 题意 求长度为n的01串中1占总长(大于L)的比例最大的一个子串起点和终点. 分析 前缀和s[i]保存前i个数有几个1,[j+1,i] 这段区间1的比例就是(s[i]-s[j])/(i-j),于是 ...

  5. HDU3045 Picnic Cows (斜率DP优化)(数形结合)

    转自PomeCat: "DP的斜率优化--对不必要的状态量进行抛弃,对不优的状态量进行搁置,使得在常数时间内找到最优解成为可能.斜率优化依靠的是数形结合的思想,通过将每个阶段和状态的答案反映 ...

  6. 【做题】TCSRM591 Div1 500 PyramidSequences——数形结合&思维

    题意:定义高度为\(x\)的金字塔数列为周期为\(2x-2\)的无限数列.它的每一个周期都是形如\(1,2,...,x-1,x,x-1,...,2\)的形式.记高度为\(x\)的金字塔数列第\(i\) ...

  7. UVa 1451 平均值

    https://vjudge.net/problem/UVA-1451 题意:给定长度为n的01串,选一个长度至少为L的连续子串,使得子串中数字的平均值最大. 思路:这题需要数形结合,真的是很灵活. ...

  8. poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题

    题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...

  9. UVa 11722 (概率 数形结合) Joining with Friend

    高中也做个这种类似的题目,概率空间是[t1, t2] × [s1, s2]的矩形,设x.y分别代表两辆列车到达的时间,则两人相遇的条件就是|x - y| <= w 从图形上看就是矩形夹在两条平行 ...

随机推荐

  1. centos7更改远程端口

    centos7更改远程端口 一.创建个普通账户(useradd work),给普通账户创建密码(password work) 二.查看应有的软件是否安装 1.查看semanager是否安装执行下面命令 ...

  2. GCC在C语言中内嵌汇编 asm __volatile__

    2012-11-26 22:20 17958人阅读 评论(2) 收藏 举报  分类: linux(59)  架构管理(24)  C/C++(59)  目录(?)[+] 在内嵌汇编中,可以将C语言表达式 ...

  3. 机器学习--DIY笔记与感悟--①K-临近算法(2)

    上一篇博客我手动写了KNN算法,并且之后用手写的算法预测了约会的成功率. 而今天,我在大神博客的指导下调用sklearn这个库来预测图片的内容. 一.前期准备 由于我这里使用的是mac版本,而skle ...

  4. python __builtins__ int类 (36)

    36.'int', 用于将一个字符串或数字转换为整型 class int(object) | int(x=0) -> integer | int(x, base=10) -> intege ...

  5. poj 3683 Priest John's Busiest Day【2-SAT+tarjan+拓扑】

    转换成2-SAT模型,建边是如果时间(i,j)冲突就连边(i,j'),其他同理 tarjan缩点,判可行性 返图拓扑,输出方案 #include<iostream> #include< ...

  6. c++ const的使用

    const是用来声明一个常量的,当你不想让一个值被改变时就用const,const int max && int const max 是没有区别的,都可以.不涉及到指针const很好理 ...

  7. 跟我一起玩Win32开发(3):窗口的重绘

    c可以编译#include <Windows.h> //先声明一下消息处理函数 LRESULT CALLBACK MyWindowProc(HWND hwnd, UINT msg, WPA ...

  8. 模拟 百度之星资格赛 1003 IP聚合

    题目传送门 /* 模拟水题,排序后找出重复的ip就可以了 */ #include <cstdio> #include <iostream> #include <algor ...

  9. HDU 1221 Rectangle and Circle 考虑很多情况,good题

    http://acm.hdu.edu.cn/showproblem.php?pid=1221 114 92 31 95 13 96 3 这题只需要判断圆和矩形是否相交,然后在里面是不算相交的. 那么就 ...

  10. (转)Unity优化之减少Drawcall

    转载:http://www.jianshu.com/p/061e67308e5f Unity GUI(uGUI)使用心得与性能总结 背景和目的 小哈接触Unity3D也有一段时间了,项目组在UI解决方 ...