思路:枚举点t,寻找满足条件的点t';

计sum[i]为前i项合,平均值即为sum[t]-sum[t'-1]/t-t'+1

设(Pi=(i,Si),表示点在s中的位置,那么就可以画出坐标图,问题就转化为斜率最大;

于是画图分析。

几个点之间只有上凸下凸两种情况,取3个点为符合条件(t-t'>=L)的t',分析后得结论上凸点在各种情况(t)下都要舍去;

于是就可以不断更新,更新策略为新插入点,删除掉原来是下凸点,插入后变成上凸点的点;

随着t增大,t'只会增大(t增大,pt增大),所以增加到斜率变小时即可停止;

而且对于某个Pt,选好切点后,对于之后的Pt,之前的点Pt'都不会用到了,于是不用从头枚举

代码

#include<cstdio>
using namespace std; const int maxn = + ; int n, L;
char s[maxn];
int sum[maxn], p[maxn]; // average of i~j is (sum[j]-sum[i-1])/(j-i+1) // compare average of x1~x2 and x3~x4 //x1-x2的斜率大于x3-x4返回1
int compare_average(int x1, int x2, int x3, int x4) {
return (sum[x2]-sum[x1-]) * (x4-x3+) - (sum[x4]-sum[x3-]) * (x2-x1+);
} int main() {
int T;
scanf("%d", &T); while(T--) {
scanf("%d%d%s", &n, &L, s+); sum[] = ;
for(int i = ; i <= n; i++) sum[i] = sum[i-] + s[i] - ''; int ansL = , ansR = L; // p[i..j) is the sequence of candidate start points
int i = , j = ; //j是起始点中最右边的点,p[j]代表那个点在序列中的位置
for (int t = L; t <= n; t++) { // end point ,枚举的右端点
while (j-i > && compare_average(p[j-], t-L, p[j-], t-L) >= ) j--; // remove concave points
//t-l是新加的点(上一步t-l+1,而for循环t++了),j-1(上一步j++了)是原来最右边的点,从最右边开始判断是否上凸 p[j++] = t-L+; // new candidate //注意上一个循环已经去掉了右面的上凸点(j--) while (j-i > && compare_average(p[i], t, p[i+], t) <= ) i++; // update tangent point切点 int c = compare_average(p[i], t, ansL, ansR); //更新
if (c > || c == && t - p[i] < ansR - ansL) {
ansL = p[i]; ansR = t;
}
}
printf("%d %d\n", ansL, ansR);
}
return ;
}

uva 1451 数形结合的更多相关文章

  1. UVa 1451 (数形结合 单调栈) Average

    题意: 给出一个01串,选一个长度至少为L的连续子串,使得串中数字的平均值最大. 分析: 能把这道题想到用数形结合,用斜率表示平均值,我觉得这个想法太“天马行空”了 首先预处理子串的前缀和sum,如果 ...

  2. UVA 1451 Average平均值 (数形结合,斜率优化)

    摘要:数形结合,斜率优化,单调队列. 题意:求一个长度为n的01串的子串,子串长度至少为L,平均值应该尽量大,多个满足条件取长度最短,还有多个的话,取起点最靠左. 求出前缀和S[i],令点Pi表示(i ...

  3. 紫书 例题8-9 UVa 1451 (数形结合)

    这道题用了数形结合, 真的牛逼, 完全想到不到还可以这么做 因为题目求的是平均值, 是总数除以个数, 这个时候就可以联系 到斜率, 也就是说转化为给你一堆点, 让你求两点之间的最大斜率 要做两个处理 ...

  4. 【UVA 1451】Average

    题 题意 求长度为n的01串中1占总长(大于L)的比例最大的一个子串起点和终点. 分析 前缀和s[i]保存前i个数有几个1,[j+1,i] 这段区间1的比例就是(s[i]-s[j])/(i-j),于是 ...

  5. HDU3045 Picnic Cows (斜率DP优化)(数形结合)

    转自PomeCat: "DP的斜率优化--对不必要的状态量进行抛弃,对不优的状态量进行搁置,使得在常数时间内找到最优解成为可能.斜率优化依靠的是数形结合的思想,通过将每个阶段和状态的答案反映 ...

  6. 【做题】TCSRM591 Div1 500 PyramidSequences——数形结合&思维

    题意:定义高度为\(x\)的金字塔数列为周期为\(2x-2\)的无限数列.它的每一个周期都是形如\(1,2,...,x-1,x,x-1,...,2\)的形式.记高度为\(x\)的金字塔数列第\(i\) ...

  7. UVa 1451 平均值

    https://vjudge.net/problem/UVA-1451 题意:给定长度为n的01串,选一个长度至少为L的连续子串,使得子串中数字的平均值最大. 思路:这题需要数形结合,真的是很灵活. ...

  8. poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题

    题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...

  9. UVa 11722 (概率 数形结合) Joining with Friend

    高中也做个这种类似的题目,概率空间是[t1, t2] × [s1, s2]的矩形,设x.y分别代表两辆列车到达的时间,则两人相遇的条件就是|x - y| <= w 从图形上看就是矩形夹在两条平行 ...

随机推荐

  1. Backbone.js之model篇(一)

    Backbone.js之model篇(一) Backbone 是一个前端 JS 代码 MVC 框架,它不可取代 Jquery,不可取代现有的 template 库.而是和这些结合起来构建复杂的 web ...

  2. JAVA编程思想中总结的与C++的区别

    Java和C++都是面向对象语言.也就是说,它们都能够实现面向对象思想(封装,继乘,多态).而由于c++为了照顾大量的C语言使用者,而兼容了C,使得自身仅仅成为了带类的C语言,多多少少影响了其面向对象 ...

  3. spark运行原理

    一.Spark专业术语定义 二. Spark的任务提交机制 一.Spark专业术语定义 从以下十五个方面描述spark概念. 1  application: spark应用程序 2  Driver:驱 ...

  4. centos7 编译安装新版LNMP环境

    centos7 编译安装新版LNMP环境 环境版本如下: 1.系统环境:Centos 7 x86_64 2.NGINX:nginx-1.11.3.tar.gz 3.数据库:mariadb-10.0.2 ...

  5. 任务28:RequestDelegate管道实现思路

    任务28:RequestDelegate管道实现思路 管道的实现机制 RequestDelegate是管道的核心.ApplicationBuilder就是接收了很多个RequestDelegae把它拼 ...

  6. E20180327-hm

    renew vt. 补充; 重新开始; 使更新; 使恢复; vi. 重申,重复强调; 重新开始; renewal  n. 重建,重生; 更新,革新; 重申; 合同的续订;

  7. Mac下的常用终端命令与vim常用命令

    因为很少用命令行,老被鄙视,所以今天记录一下常用的命令行: cd 切换工作目录 . 表示当前目录 .. 表示当前目录的上一级目录 / 根目录/目录分隔符 ./ 当前目录 ../ 回到上一级目录 ls ...

  8. XTU1266:Parentheses(贪心+优先队列)

    传送门 题意 从左到右有n个连续的组,每一组有Li个括号,要么全是左括号,要么全是右括号,以及该组的每一个左括号翻成右括号, 或者右括号翻成左括号的花费Di.可以对这n个组的括号进行翻转,每一个括号都 ...

  9. gets,gets_s,fgets函数

    这次就说一下,gets(),gets_s(),fgets(),::::[在某一篇博客上看到的] C的标准库gets函数不对接受字符串的buffer进行边界检测,会造成越界,从而产生bug: fgets ...

  10. LCA Codeforces 100685G Gadget Hackwrench

    题目传送门 题意:一棵有向的树,问u到v是否可达 分析:假设是无向树,DFS时正向的权值+1,反向的权值-1,然后找到LCA后判断dep数组和d数组就可以了 /******************** ...