C. NP-Hard Problem
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.

Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e.  or  (or both).

Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.

They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it's impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.

Each of the next m lines contains a pair of integers ui and vi (1  ≤  ui,  vi  ≤  n), denoting an undirected edge between ui and vi. It's guaranteed the graph won't contain any self-loops or multiple edges.

Output

If it's impossible to split the graph between Pari and Arya as they expect, print "-1" (without quotes).

If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains kintegers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.

Examples
input
4 2
1 2
2 3
output
1
2
2
1 3
input
3 3
1 2
2 3
1 3
output
-1
Note

In the first sample, you can give the vertex number 2 to Arya and vertices numbered 1 and 3 to Pari and keep vertex number 4 for yourself (or give it someone, if you wish).

In the second sample, there is no way to satisfy both Pari and Arya.

原来二分图判断是用BFS或DFS染色法,还是对BFS比较熟悉就用BFS了。然而一开始只随便对1这个点进行BFS,并没有考虑到1也许本身就是被舍弃的点,而且数据会出现多个连通分量并存。看了大牛的博客才知道要对每一个节点所在的图都进行判断。难怪一直WA在第15组数据……,也算是学习了二分图的判断方法了

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define MM(x,y) memset(x,y,sizeof(x))
typedef long long LL;
const double PI=acos(-1.0);
const int N=100010; vector<int>E[N];
int color[N]; void init()
{
for (int i=0; i<N; i++)
E[i].clear();
MM(color,0);
}
bool bfs(int s)
{
queue<int>Q;
int i;
Q.push(s);
color[s]=1;
while (!Q.empty())
{
int now=Q.front();
Q.pop();
int SZ=E[now].size();
for (i=0; i<SZ; ++i)
{
int v=E[now][i];
if(!color[v])
{
color[v]=(color[now]==1?2:1);
Q.push(v);
}
else if(color[v]&&color[v]==color[now])
return false;
}
}
return true;
}
int main(void)
{
int n,m,i,j,k,a,b,c,flag;
while (~scanf("%d%d",&n,&m))
{
init();
flag=1;
for (i=0; i<m; i++)
{
scanf("%d%d",&a,&b);
E[a].push_back(b);
E[b].push_back(a);
}
for (i=1; i<=n; i++)
{
if(!color[i]&&E[i].size()>0)
{
if(!bfs(i))
flag=0;
}
}
if(!flag)
puts("-1");
else
{
int cnta=0,cntb=0;
vector<int>va,vb;
for (i=1; i<=n; i++)
{
if(color[i]==1)
{
va.push_back(i);
cnta++;
}
else if(color[i]==2)
{
vb.push_back(i);
cntb++;
}
}
printf("%d\n",cnta);
for (i=0; i<cnta; i++)
printf("%d%s",va[i],i==cnta-1?"\n":" "); printf("%d\n",cntb);
for (i=0; i<cntb; i++)
printf("%d%s",vb[i],i==cntb-1?"\n":" ");
}
}
return 0;
}

Codeforces Round #360 (Div. 2)——C. NP-Hard Problem(BFS染色判二分图)的更多相关文章

  1. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集

    D. Dividing Kingdom II 题目连接: http://www.codeforces.com/contest/687/problem/D Description Long time a ...

  2. Codeforces Round #360 (Div. 2) D. Remainders Game 数学

    D. Remainders Game 题目连接: http://www.codeforces.com/contest/688/problem/D Description Today Pari and ...

  3. Codeforces Round #360 (Div. 2) C. NP-Hard Problem 水题

    C. NP-Hard Problem 题目连接: http://www.codeforces.com/contest/688/problem/C Description Recently, Pari ...

  4. Codeforces Round #360 (Div. 2) B. Lovely Palindromes 水题

    B. Lovely Palindromes 题目连接: http://www.codeforces.com/contest/688/problem/B Description Pari has a f ...

  5. Codeforces Round #360 (Div. 2) A. Opponents 水题

    A. Opponents 题目连接: http://www.codeforces.com/contest/688/problem/A Description Arya has n opponents ...

  6. Codeforces Round #360 (Div. 1)A (二分图&dfs染色)

    题目链接:http://codeforces.com/problemset/problem/687/A 题意:给出一个n个点m条边的图,分别将每条边连接的两个点放到两个集合中,输出两个集合中的点,若不 ...

  7. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环

    D. Dividing Kingdom II   Long time ago, there was a great kingdom and it was being ruled by The Grea ...

  8. Codeforces Round #360 (Div. 2) E. The Values You Can Make DP

    E. The Values You Can Make     Pari wants to buy an expensive chocolate from Arya. She has n coins, ...

  9. Codeforces Round #360 (Div. 2) C D E

    每次AB秒出 到了C难度陡然上升...翻译都弄不懂... C 给出一张图 找出两个点的覆盖集(覆盖集是指这图中每条边都有至少一个点在这个点集里面) 并且两个点集没有交集 英文很难看懂...就是二分图的 ...

  10. Codeforces Round #360 (Div. 2) E. The Values You Can Make 01背包

    题目链接: 题目 E. The Values You Can Make time limit per test:2 seconds memory limit per test:256 megabyte ...

随机推荐

  1. asp.net 页面嵌套(非iframe)方法

    前台 <div id="divUrlDetail" runat="server"> </div> 后台 protected void P ...

  2. Python 中函数(Function)的用法

    函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.Python提供了许多内建函数,比如print().input(),也可以自己创建函数, ...

  3. MIPS简单入门

    What ‘s the MIPS? 汇编语言 汇编语言是一类语言的总称,因处理器不同,而对应的不同机器的指令集也不同,产生了很多种汇编语言. 目前最流行的是ARM,MIPS,x86.ARM用于大量的移 ...

  4. ftp - Internet 文件传输程序 (file transfer program)

    概述 (SYNOPSIS) ftp [-pinegvd ] [host ] pftp [-inegvd ] [host ] 说明 (DESCRIPTION) 用户通过 Ftp 这个程序来使用 Inte ...

  5. 计算机图形学:贝塞尔曲线(Bezier Curve)

    计算机图形学:贝塞尔曲线(Bezier Curve) 贝塞尔能由贝塞尔样条组合而成,也可产生更高维的贝塞尔曲面.

  6. gson对象的相互转换

    参见 http://www.javacreed.com/gson-deserialiser-example/

  7. java程序-类的高级特性

    创建Employee类,在类中定义三个属性:编号,姓名,年龄,然后在构造方法里初始化这三个属性,最后在实现接口中的定义的CompareTo方法,将对象按编号升序排列. 代码如下:(程序可能有些错误,方 ...

  8. Java代码实现文件上传(转载)

    刚刚发表了一篇Java发送电子邮件,以前真是没注意,commons里这么多常用项目,惭愧呀,直到现在回顾;要学习的真是太多了,还是缺少真正的学习能力... 这里用到的是commons-fileuplo ...

  9. Bootstrap 响应式表格

    响应式表格 通过把任意的 .table 包在 .table-responsive class 内,您可以让表格水平滚动以适应小型设备(小于 768px).当在大于 768px 宽的大型设备上查看时,您 ...

  10. Apache Commons Configuration的应用

    Apache Commons Configuration的应用 Commons Configuration是一个java应用程序的配置管理工具.可以从properties或者xml文件中加载软件的配置 ...