Modular multiplication of polynomials
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4377   Accepted: 1980

Description

Consider polynomials whose coefficients are 0 and 1. Addition of two polynomials is achieved by 'adding' the coefficients for the corresponding powers in the polynomials. The addition of coefficients is performed by addition modulo 2, i.e., (0 + 0) mod 2 =
0, (0 + 1) mod 2 = 1, (1 + 0) mod 2 = 1, and (1 + 1) mod 2 = 0. Hence, it is the same as the exclusive-or operation. 



(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2 



Subtraction of two polynomials is done similarly. Since subtraction of coefficients is performed by subtraction modulo 2 which is also the exclusive-or operation, subtraction of polynomials is identical to addition of polynomials. 



(x^6 + x^4 + x^2 + x + 1) - (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2 



Multiplication of two polynomials is done in the usual way (of course, addition of coefficients is performed by addition modulo 2). 



(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 



Multiplication of two polynomials f(x) and g(x) modulo a polynomial h(x) is the remainder of f(x)g(x) divided by h(x). 



(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) modulo (x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1 

The largest exponent of a polynomial is called its degree. For example, the degree of x^7 + x^6 + 1 is 7. 



Given three polynomials f(x), g(x), and h(x), you are to write a program that computes f(x)g(x) modulo h(x). 

We assume that the degrees of both f(x) and g(x) are less than the degree of h(x). The degree of a polynomial is less than 1000. 



Since coefficients of a polynomial are 0 or 1, a polynomial can be represented by d+1 and a bit string of length d+1, where d is the degree of the polynomial and the bit string represents the coefficients of the polynomial. For example, x^7 + x^6 + 1 can be
represented by 8 1 1 0 0 0 0 0 1.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of three lines that contain three polynomials f(x), g(x), and h(x), one per line. Each polynomial is represented as described
above.

Output

The output should contain the polynomial f(x)g(x) modulo h(x), one per line.

Sample Input

2
7 1 0 1 0 1 1 1
8 1 0 0 0 0 0 1 1
9 1 0 0 0 1 1 0 1 1
10 1 1 0 1 0 0 1 0 0 1
12 1 1 0 1 0 0 1 1 0 0 1 0
15 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1

Sample Output

8 1 1 0 0 0 0 0 1
14 1 1 0 1 1 0 0 1 1 1 0 1 0 0

Source

Taejon 2001

你  离  开  了  ,  我  的  世  界  里  只  剩  下  雨  。  。  。

#include <iostream>
#include<string.h>
using namespace std;
int pd(int sum[],int ls,int h[],int lh)
{
if(ls>lh)return 1;
if(ls<lh)return -1;
if(ls==lh)
{
int i;
for(i=ls-1; i>=0; i--)
{
if(sum[i]&&!h[i])return 1;
if(!sum[i]&&h[i])return -1;
}
}
return 0;
}
int main()
{
int n;
cin>>n;
int c;
for(c=1; c<=n; c++)
{
int lf,lg,lh;
int f[1001],g[1001],h[1001];
int i;
cin>>lf;
for(i=lf-1; i>=0; i--)
cin>>f[i];
cin>>lg;
for(i=lg-1; i>=0; i--)
cin>>g[i];
cin>>lh;
for(i=lh-1; i>=0; i--)
cin>>h[i];
int sum[2001];
memset(sum,0,sizeof(sum));
int j;
for(i=0; i<lf; i++)
for(j=0; j<lg; j++)
sum[i+j]=sum[i+j]^(f[i]&g[j]);
int ls;
ls=lf+lg-1;
while(pd(sum,ls,h,lh)>=0)
{
int d=ls-lh;
for(i=0; i<lh; i++)
sum[i+d]=sum[i+d]^h[i];
while(ls&&!sum[ls-1])
--ls;
}
if(ls==0)ls=1;
cout<<ls<<" ";
for(i=ls-1; i>0; i--)
cout<<sum[i]<<" ";
cout<<sum[0]<<endl;
}
return 0;
}

POJ 1060:Modular multiplication of polynomials的更多相关文章

  1. POJ 1060 Modular multiplication of polynomials(多项式的加减乘除,除法转化成减法来求)

    题意:给出f(x),g(x),h(x)的 (最高次幂+1)的值,以及它们的各项系数,求f(x)*g(x)/h(x)的余数. 这里多项式的系数只有1或0,因为题目要求:这里多项式的加减法是将系数相加/减 ...

  2. POJ1060 Modular multiplication of polynomials

    题目来源:http://poj.org/problem?id=1060 题目大意: 考虑系数为0和1的多项式.两个多项式的加法可以通过把相应次数项的系数相加而实现.但此处我们用模2加法来计算系数之和. ...

  3. POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3 ...

  4. UVALive 2323 Modular Multiplication of Polynomials(模拟)

    这是一个相对简单的模拟,因为运算规则已经告诉了我们,并且比较简单,不要被吓到…… 思路:多项式除以另外一个多项式,如果能除,那么他的最高次一定被降低了,如果最高次不能被降低,那说明已经无法被除,就是题 ...

  5. Lintcode: Hash Function && Summary: Modular Multiplication, Addition, Power && Summary: 长整形long

    In data structure Hash, hash function is used to convert a string(or any other type) into an integer ...

  6. poj 1060

    http://poj.org/problem?id=1060 题意:多项式的运算的题目,不过这个运算有个特点,就是只要是同项的多项式,无论相加还是相减,都为0,给你三个多项式,分别为a,b,c. 要你 ...

  7. POJ 3673 Cow Multiplication

    Cow Multiplication Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13312   Accepted: 93 ...

  8. Poj 3318 Matrix Multiplication( 矩阵压缩)

    Matrix Multiplication Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18928   Accepted: ...

  9. poj 2505 A multiplication game(博弈)

    A multiplication game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5622   Accepted: ...

随机推荐

  1. 题解 洛谷P4035/BZOJ1013【[JSOI2008]球形空间产生器】

    题目链接在这QvQ "你要求出这个n维球体的球心坐标",这使我想到的解方程...... 先假设n=2,这是一个二维平面.设圆心的坐标为\((x,y)\),有两个坐标\((a_1,b ...

  2. galera cluster安装与配置

    由于公司数据量与并发的日渐增大,普通的主从复制已无法满足要求.对比了网上PXC.galera.mysql cluster等方案,最终决定选择galera cluster. 以下为安装步骤: 1.下载g ...

  3. find -print0和xargs -0原理及用法

    平常我们经常把find和xargs搭配使用,例如: find . -name "*.txt" | xargs rm 但是这个命令如果遇到文件名里有空格或者换行符,就会出错.因为xa ...

  4. laravel框架应用和composer扩展包开发

    laravel5.5+ laravel官方地址 laravel是目前最流行的php框架,发展势头迅猛,应用非常广泛,有丰富的扩展包可以应付你能想到的各种应用场景,laravel框架思想前卫,跟随时代潮 ...

  5. Poj 2187 旋转卡壳

    Poj 2187 旋转卡壳求解 传送门 旋转卡壳,是利用凸包性质来求解凸包最长点对的线性算法,我们逐渐改变每一次方向,然后枚举出这个方向上的踵点对(最远点对),类似于用游标卡尺卡着凸包旋转一周,答案就 ...

  6. 缩小Oracle目录下UNDOTBS01.DBF文件的大小

    缩小Oracle目录下UNDOTBS01.DBF文件的大小 分类: Oracle 使用sys用户登录Oracle 方法一:重置表空间大小 执行ALTER DATABASE DATAFILE 'D:OR ...

  7. SBT 模板不完全总结,后续待填

    ; ; ; ; ){ ; &&k<T[r].key)||(T[r].right==&&k>T[r].key)){ );      }             ...

  8. Flask基础(3):session、flash、特殊装饰器、蓝图、路由正则匹配、上下文管理 & flask-session

    Session: Flask 默认将 session 以加密的形式放到了浏览器的 cookie 中 Flask 的 session 就是一个字典,字典有什么方法 session 就有什么方法 flas ...

  9. 51nod1020 逆序排列

    t<=10000个问,每次问n<=1000的全排列中逆序数对为k<=10000个的有多少,mod 1e9+7. 直接dp,$f(i,j)$--i的全排列中逆序数对为j的有多少,$f( ...

  10. Codeforces 651C Watchmen【模拟】

    题意: 求欧几里得距离与曼哈顿距离相等的组数. 分析: 化简后得到xi=xj||yi=yj,即为求x相等 + y相等 - x与y均相等. 代码: #include<iostream> #i ...