POJ 1060:Modular multiplication of polynomials
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4377 | Accepted: 1980 |
Description
0, (0 + 1) mod 2 = 1, (1 + 0) mod 2 = 1, and (1 + 1) mod 2 = 0. Hence, it is the same as the exclusive-or operation.
(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2
Subtraction of two polynomials is done similarly. Since subtraction of coefficients is performed by subtraction modulo 2 which is also the exclusive-or operation, subtraction of polynomials is identical to addition of polynomials.
(x^6 + x^4 + x^2 + x + 1) - (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2
Multiplication of two polynomials is done in the usual way (of course, addition of coefficients is performed by addition modulo 2).
(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1
Multiplication of two polynomials f(x) and g(x) modulo a polynomial h(x) is the remainder of f(x)g(x) divided by h(x).
(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) modulo (x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1
The largest exponent of a polynomial is called its degree. For example, the degree of x^7 + x^6 + 1 is 7.
Given three polynomials f(x), g(x), and h(x), you are to write a program that computes f(x)g(x) modulo h(x).
We assume that the degrees of both f(x) and g(x) are less than the degree of h(x). The degree of a polynomial is less than 1000.
Since coefficients of a polynomial are 0 or 1, a polynomial can be represented by d+1 and a bit string of length d+1, where d is the degree of the polynomial and the bit string represents the coefficients of the polynomial. For example, x^7 + x^6 + 1 can be
represented by 8 1 1 0 0 0 0 0 1.
Input
above.
Output
Sample Input
2
7 1 0 1 0 1 1 1
8 1 0 0 0 0 0 1 1
9 1 0 0 0 1 1 0 1 1
10 1 1 0 1 0 0 1 0 0 1
12 1 1 0 1 0 0 1 1 0 0 1 0
15 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1
Sample Output
8 1 1 0 0 0 0 0 1
14 1 1 0 1 1 0 0 1 1 1 0 1 0 0
Source
你 离 开 了 , 我 的 世 界 里 只 剩 下 雨 。 。 。
#include <iostream>
#include<string.h>
using namespace std;
int pd(int sum[],int ls,int h[],int lh)
{
if(ls>lh)return 1;
if(ls<lh)return -1;
if(ls==lh)
{
int i;
for(i=ls-1; i>=0; i--)
{
if(sum[i]&&!h[i])return 1;
if(!sum[i]&&h[i])return -1;
}
}
return 0;
}
int main()
{
int n;
cin>>n;
int c;
for(c=1; c<=n; c++)
{
int lf,lg,lh;
int f[1001],g[1001],h[1001];
int i;
cin>>lf;
for(i=lf-1; i>=0; i--)
cin>>f[i];
cin>>lg;
for(i=lg-1; i>=0; i--)
cin>>g[i];
cin>>lh;
for(i=lh-1; i>=0; i--)
cin>>h[i];
int sum[2001];
memset(sum,0,sizeof(sum));
int j;
for(i=0; i<lf; i++)
for(j=0; j<lg; j++)
sum[i+j]=sum[i+j]^(f[i]&g[j]);
int ls;
ls=lf+lg-1;
while(pd(sum,ls,h,lh)>=0)
{
int d=ls-lh;
for(i=0; i<lh; i++)
sum[i+d]=sum[i+d]^h[i];
while(ls&&!sum[ls-1])
--ls;
}
if(ls==0)ls=1;
cout<<ls<<" ";
for(i=ls-1; i>0; i--)
cout<<sum[i]<<" ";
cout<<sum[0]<<endl;
}
return 0;
}
POJ 1060:Modular multiplication of polynomials的更多相关文章
- POJ 1060 Modular multiplication of polynomials(多项式的加减乘除,除法转化成减法来求)
题意:给出f(x),g(x),h(x)的 (最高次幂+1)的值,以及它们的各项系数,求f(x)*g(x)/h(x)的余数. 这里多项式的系数只有1或0,因为题目要求:这里多项式的加减法是将系数相加/减 ...
- POJ1060 Modular multiplication of polynomials
题目来源:http://poj.org/problem?id=1060 题目大意: 考虑系数为0和1的多项式.两个多项式的加法可以通过把相应次数项的系数相加而实现.但此处我们用模2加法来计算系数之和. ...
- POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)
Modular multiplication of polynomials Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3 ...
- UVALive 2323 Modular Multiplication of Polynomials(模拟)
这是一个相对简单的模拟,因为运算规则已经告诉了我们,并且比较简单,不要被吓到…… 思路:多项式除以另外一个多项式,如果能除,那么他的最高次一定被降低了,如果最高次不能被降低,那说明已经无法被除,就是题 ...
- Lintcode: Hash Function && Summary: Modular Multiplication, Addition, Power && Summary: 长整形long
In data structure Hash, hash function is used to convert a string(or any other type) into an integer ...
- poj 1060
http://poj.org/problem?id=1060 题意:多项式的运算的题目,不过这个运算有个特点,就是只要是同项的多项式,无论相加还是相减,都为0,给你三个多项式,分别为a,b,c. 要你 ...
- POJ 3673 Cow Multiplication
Cow Multiplication Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13312 Accepted: 93 ...
- Poj 3318 Matrix Multiplication( 矩阵压缩)
Matrix Multiplication Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 18928 Accepted: ...
- poj 2505 A multiplication game(博弈)
A multiplication game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5622 Accepted: ...
随机推荐
- 题解 洛谷P4035/BZOJ1013【[JSOI2008]球形空间产生器】
题目链接在这QvQ "你要求出这个n维球体的球心坐标",这使我想到的解方程...... 先假设n=2,这是一个二维平面.设圆心的坐标为\((x,y)\),有两个坐标\((a_1,b ...
- galera cluster安装与配置
由于公司数据量与并发的日渐增大,普通的主从复制已无法满足要求.对比了网上PXC.galera.mysql cluster等方案,最终决定选择galera cluster. 以下为安装步骤: 1.下载g ...
- find -print0和xargs -0原理及用法
平常我们经常把find和xargs搭配使用,例如: find . -name "*.txt" | xargs rm 但是这个命令如果遇到文件名里有空格或者换行符,就会出错.因为xa ...
- laravel框架应用和composer扩展包开发
laravel5.5+ laravel官方地址 laravel是目前最流行的php框架,发展势头迅猛,应用非常广泛,有丰富的扩展包可以应付你能想到的各种应用场景,laravel框架思想前卫,跟随时代潮 ...
- Poj 2187 旋转卡壳
Poj 2187 旋转卡壳求解 传送门 旋转卡壳,是利用凸包性质来求解凸包最长点对的线性算法,我们逐渐改变每一次方向,然后枚举出这个方向上的踵点对(最远点对),类似于用游标卡尺卡着凸包旋转一周,答案就 ...
- 缩小Oracle目录下UNDOTBS01.DBF文件的大小
缩小Oracle目录下UNDOTBS01.DBF文件的大小 分类: Oracle 使用sys用户登录Oracle 方法一:重置表空间大小 执行ALTER DATABASE DATAFILE 'D:OR ...
- SBT 模板不完全总结,后续待填
; ; ; ; ){ ; &&k<T[r].key)||(T[r].right==&&k>T[r].key)){ ); } ...
- Flask基础(3):session、flash、特殊装饰器、蓝图、路由正则匹配、上下文管理 & flask-session
Session: Flask 默认将 session 以加密的形式放到了浏览器的 cookie 中 Flask 的 session 就是一个字典,字典有什么方法 session 就有什么方法 flas ...
- 51nod1020 逆序排列
t<=10000个问,每次问n<=1000的全排列中逆序数对为k<=10000个的有多少,mod 1e9+7. 直接dp,$f(i,j)$--i的全排列中逆序数对为j的有多少,$f( ...
- Codeforces 651C Watchmen【模拟】
题意: 求欧几里得距离与曼哈顿距离相等的组数. 分析: 化简后得到xi=xj||yi=yj,即为求x相等 + y相等 - x与y均相等. 代码: #include<iostream> #i ...