题目描述

暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题。由于地上露营湿气重,必须选择在高处的树屋露营。小龙分配的树屋建立在一颗高度为N+1尺(N为正整数)的大树上,正当他发愁怎么爬上去的时候,发现旁边堆满了一些空心四方钢材(如图1.1),经过观察和测量,这些钢材截面的宽和高大小不一,但都是1尺的整数倍,教官命令队员们每人选取N个空心钢材来搭建一个总高度为N尺的阶梯来进入树屋,该阶梯每一步台阶的高度为1尺,宽度也为1尺。如果这些钢材有各种尺寸,且每种尺寸数量充足,那么小龙可以有多少种搭建方法?(注:为了避免夜里踏空,钢材空心的一面绝对不可以向上。)

以树屋高度为4尺、阶梯高度N=3尺为例,小龙一共有如图1.2所示的5种

搭 建方法:

输入

一个正整数 N(1≤N≤500),表示阶梯的高度

输出

一个正整数,表示搭建方法的个数。(注:搭建方法个数可能很大。)

样例输入

3

样例输出

5

提示

1  ≤N≤500

设f[i]表示n=i时的答案,考虑这样一种构造方法:

在n阶阶梯的左上角放一个i阶阶梯,右下角放一个n-i-1阶阶梯,剩下的部分用一个大矩形补上,这样恰好用了n个矩形

那么f[n]=f[0]*f[n-1]+f[1]*f[n-2]+……+f[n-2]*f[1]+f[n-1]*f[0]

这个就是卡特兰数的递推式!

因为没有模数,所以要高精度。

将卡特兰数用组合数的通项公式表示,枚举每个质因子在分子和分母分别出现几次,用分子的减去分母的,剩下的就是一个高精乘低精。

#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
struct miku
{
int len;
int a[10010];
};
int n;
miku multiply(miku x,int y)
{
miku z;
for(int i=1;i<=x.len;i++)
{
z.a[i]=x.a[i]*y;
}
for(int i=2;i<=x.len;i++)
{
z.a[i]+=z.a[i-1]/10;
z.a[i-1]%=10;
}
z.len=x.len;
while(z.a[z.len]>10)
{
z.len++;
z.a[z.len]+=z.a[z.len-1]/10;
z.a[z.len-1]%=10;
}
return z;
}
miku divide(miku x,int y)
{
miku z;
int res=0;
for(int i=x.len;i>=1;i--)
{
res=res*10+x.a[i];
z.a[i]=res/y;
res%=y;
}
z.len=x.len;
while(z.a[z.len]==0)
{
z.len--;
}
return z;
}
int main()
{
scanf("%d",&n);
miku ans;
ans.len=1;
ans.a[1]=1;
for(int i=n+2;i<=2*n;i++)
{
ans=multiply(ans,i);
}
for(int i=1;i<=n;i++)
{
ans=divide(ans,i);
}
for(int i=ans.len;i>=1;i--)
{
printf("%d",ans.a[i]);
}
}

BZOJ2822[AHOI2012]树屋阶梯——卡特兰数+高精度的更多相关文章

  1. bzoj3907 网格 & bzoj2822 [AHOI2012]树屋阶梯——卡特兰数+高精度

    题目:bzoj3907:https://www.lydsy.com/JudgeOnline/problem.php?id=3907 bzoj2822:https://www.lydsy.com/Jud ...

  2. BZOJ2822:[AHOI2012]树屋阶梯(卡特兰数,高精度)

    Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为 ...

  3. bzoj2822[AHOI2012]树屋阶梯(卡特兰数)

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 879  Solved: 513[Submit][Status] ...

  4. [bzoj2822][AHOI2012]树屋阶梯 (卡特兰数+分解质因数+高精度)

    Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为 ...

  5. bzoj 3907 网格 bzoj2822 [AHOI2012]树屋阶梯——卡特兰数(阶乘高精度模板)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3907 https://www.lydsy.com/JudgeOnline/problem.p ...

  6. BZOJ 2822: [AHOI2012]树屋阶梯 [Catalan数 高精度]

    2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 779  Solved: 453[Submit][Status] ...

  7. bzoj 2822 [AHOI2012]树屋阶梯 卡特兰数

    因为规定n层的阶梯只能用n块木板 那么就需要考虑,多出来的一块木板往哪里放 考虑往直角处放置新的木板 不管怎样,只有多的木板一直扩展到斜边表面,才会是合法的新状态,发现,这样之后,整个n层阶梯就被分成 ...

  8. P2532 [AHOI2012]树屋阶梯 卡特兰数

    这个题是一个卡特兰数的裸题,为什么呢?因为可以通过划分来导出递推式从而判断是卡特兰数,然后直接上公式就行了.卡特兰数的公式见链接. https://www.luogu.org/problemnew/s ...

  9. 【BZOJ 2822】[AHOI2012]树屋阶梯 卡特兰数+高精

    这道题随便弄几个数就发现是卡特兰数然而为什么是呢? 我们发现我们在增加一列时,如果这一个东西(那一列)他就一格,那么就是上一次的方案数,并没有任何改变,他占满了也是,然后他要是占两格呢,就是把原来的切 ...

随机推荐

  1. C# 语法四 修饰符

    1.sealed 不能派生 2.internal 仅仅在本项目中被访问 3.public 整个系统 4.private 本类访问 5.protected 本类.派生类访问 using System; ...

  2. linux下打包压缩和解压命令

    .tar 压缩:tar cvf FileName.tar FileName 解压:tar xvf FileName.tar .gz解压1:gunzip FileName.gz解压2:gzip -d F ...

  3. Vue-Vue组件的注册和使用

    全局注册: 要注册一个全局组件,可以使用 Vue.component(tagName, options). 注意确保在初始化根实例之前注册组件: html代码: <div id="ex ...

  4. Ionic 中badge的应用

    app中如果有服务端推送过来的消息,用户没有查看的话,出现一个数字提醒,类似微信的那种效果. 在Ionic中的实现过程还是很简单的: <ion-tab title="首页" ...

  5. html5录音支持pc和Android、ios部分浏览器,微信也是支持的,JavaScript getUserMedia

    以前在前人基础上重复造了一个网页录音的轮子,顺带把github仓库使用研究了一下,扔到了github上. 优势在于结构简单,可插拔式的录音格式支持,几乎可以支持任意格式(前提有相应的编码器):默认提供 ...

  6. “论 ofo 是如何影响今日头条发展的”

    近段时间, ofo 小黄车押金难退的消息频频曝出.尽管 OFO 已经宣布押金只能在线上退还,但是线上退押金也难,因此很多的用户还是选择到 ofo 北京总部“要个说法”.记者昨天在现场发现,位于北京中关 ...

  7. ANSYS附加动水质量(westergarrd公式)

    在水工结构的抗震计算中,不可避免的需要考虑动水压力的作用,当前规范中一般是要求将动水压力以附加质量的形式考虑,如果对压力用质量形式考虑有疑惑时,可以这样理解:结构发生振动时,会带动周围的水体发生运动, ...

  8. StackOverflow 问题

    StackOverflow  这个问题一般是你的程序里头可能是有死循环或递归调用所产生的:可以查看一下你的程序,也可以增大你JVM的内存~~~在Eclipse中JDK的配置中加上   -XX:MaxD ...

  9. 安卓开发helloworld

    https://blog.csdn.net/tangjie134/article/details/79495204

  10. UML图中类之间的关系:依赖,泛化,关联,聚合,组合,实现(转)

    UML图中类之间的关系:依赖,泛化,关联,聚合,组合,实现   类与类图 1) 类(Class)封装了数据和行为,是面向对象的重要组成部分,它是具有相同属性.操作.关系的对象集合的总称. 2) 在系统 ...