Network
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 15268   Accepted: 5987   Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

Source

Northeastern Europe 2001, Northern Subregion
 
 
题目大意:给你n个顶点m条无向边。让你求一棵生成树,使得最大边权尽量小。输出最长边,边的条数,哪些边。这题是特判,所以跟样例输出可能不太一样。
解题思路:即求最小瓶颈生成树。当用kruskal算法求解的时候。图第一次连通的时候,最后加入的那条边,即为所求。
 
 
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
using namespace std;
const int maxn = 1010;
const int maxe = 15010;
struct Edge{
int from,to,dist,idx;
Edge(){}
Edge(int _from,int _to,int _dist,int _idx):from(_from),to(_to),dist(_dist),idx(_idx){}
}edges[maxe];
struct Set{
int pa,rela;
}sets[maxn];
int ans[maxn];
bool cmp(Edge a,Edge b){
return a.dist < b.dist;
}
void init(int n){
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
}
int Find(int x){
if(x == sets[x].pa){
return x;
}
int tmp = sets[x].pa;
sets[x].pa = Find(tmp);
return sets[x].pa;
}
int main(){
int n, m;
while(scanf("%d%d",&n,&m)!=EOF){
init(n);
int a,b,c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a,&b,&c);
edges[i] = Edge(a,b,c,i);
}
sort(edges,edges+m,cmp);
int cnt = 0;
for(int i = 0; i < m; i++){
Edge & e = edges[i];
int rootx, rooty;
rootx = Find(e.from);
rooty = Find(e.to);
if(rootx == rooty){
continue;
}
sets[rooty].pa = rootx;
ans[cnt++] = i;
}
printf("%d\n",edges[ans[cnt-1]].dist);
printf("%d\n",cnt);
for(int i = 0; i < cnt; i++){
printf("%d %d\n",edges[ans[i]].from,edges[ans[i]].to);
}
}
return 0;
}

  

POJ 1861 ——Network——————【最小瓶颈生成树】的更多相关文章

  1. 【UVA 11354】 Bond (最小瓶颈生成树、树上倍增)

    [题意] n个点m条边的图 q次询问 找到一条从s到t的一条边 使所有边的最大危险系数最小 InputThere will be at most 5 cases in the input file.T ...

  2. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  3. 【最小瓶颈生成树】【最小生成树】【kruscal】bzoj1083 [SCOI2005]繁忙的都市

    本意是求最小瓶颈生成树,但是我们可以证明:最小生成树也是最小瓶颈生成树(其实我不会).数据范围很小,暴力kruscal即可. #include<cstdio> #include<al ...

  4. 【bzoj2429】[HAOI2006]聪明的猴子(图论--最小瓶颈生成树 模版题)

    题意:有M只猴子,他们的最大跳跃距离为Ai.树林中有N棵树露出了水面,给出了它们的坐标.问有多少只猴子能在这个地区露出水面的所有树冠上觅食. 解法:由于要尽量多的猴子能到达所有树冠,便用Kruskal ...

  5. POJ 1861 Network (MST)

    题意:求解最小生成树,以及最小瓶颈生成树上的瓶颈边. 思路:只是求最小生成树即可.瓶颈边就是生成树上权值最大的那条边. //#include <bits/stdc++.h> #includ ...

  6. BZOJ 3732 Network 最小瓶颈路

    题目大意:给出一个无向边,非常多询问,问x,y两地之间的最长路最短是多少. 思路:乍一看好像是二分啊. 的确这个题二分能够做.可是时间会慢非常多,有的题直接就T掉(NOIP2013货车运输). 事实上 ...

  7. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  8. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  9. POJ 1861 Network (模版kruskal算法)

    Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: Accepted: Special Judge Descripti ...

随机推荐

  1. github分支管理

    一. 需要创建的分支 1.master 主分支 2.dev 开发分支 3.bug 修改bug分支 4.release 预发布分支 二.分支使用 1.在master上创建dev,bug,release分 ...

  2. Binder学习笔记(四)—— ServiceManager如何响应checkService请求

    这要从frameworks/native/cmds/servicemanager/service_manager.c:347的main函数说起,该文件编译后生成servicemanager. int ...

  3. 【转】Linux将composer的bin目录放到PATH环境变量中

    将composer的bin目录放到PATH环境变量中 使用composer global config bin-dir --absolute查看composer的bin目录 输出类似 Changed ...

  4. P3379 【模板】最近公共祖先(LCA)(LCT)

    \(\color{#0066ff}{ 题目描述 }\) 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. \(\color{#0066ff}{输入格式}\) 第一行包含三个正整数N.M. ...

  5. 洛谷2685 [TJOI2012]桥

    [TJOI2012]桥 题目大意:给定一无向图,求删除一条边后1到n最短路的最大值,以及方案数. 做法:我们先从1为起点.从n为起点跑两边dij,获得每一个点到起点1.终点n的最短距离,其实距离和边权 ...

  6. shell脚本学习一

    shell脚本是一种程序与linux内核的语言: 第一个shell脚本: #!/bin/bash echo "cxy" 就是输出cxy 如何执行这个脚本呢: cd demo 进入s ...

  7. 【STL基础】list

    list 构造函数: //default: list<T> l; //空的list //fill: list<T> l(n); //n个元素, 元素默认初始化 list< ...

  8. Unity 动画系统 Animation 和 Animator的小实例

    本文结合一个很简单的动画demo,分别采用2种方法,来对比Animation和Animator的使用方式: 方法1:单独使用Animation 方法2:Animation结合Animator 动画De ...

  9. 【学习笔记】jQuery的基础学习

    [学习笔记]jQuery的基础学习 新建 模板 小书匠  什么是jQuery对象? jQuery 对象就是通过jQuery包装DOM对象后产生的对象.jQuery 对象是 jQuery 独有的. 如果 ...

  10. Android MVP模式实现组件和业务逻辑分离

    1,Activity代码展示,只需要一下3行重要代码即可完成任何复杂的逻辑 /** * 登录界面 * * @author lipanquan */public class LoginActivity ...