Network
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 15268   Accepted: 5987   Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

Source

Northeastern Europe 2001, Northern Subregion
 
 
题目大意:给你n个顶点m条无向边。让你求一棵生成树,使得最大边权尽量小。输出最长边,边的条数,哪些边。这题是特判,所以跟样例输出可能不太一样。
解题思路:即求最小瓶颈生成树。当用kruskal算法求解的时候。图第一次连通的时候,最后加入的那条边,即为所求。
 
 
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
using namespace std;
const int maxn = 1010;
const int maxe = 15010;
struct Edge{
int from,to,dist,idx;
Edge(){}
Edge(int _from,int _to,int _dist,int _idx):from(_from),to(_to),dist(_dist),idx(_idx){}
}edges[maxe];
struct Set{
int pa,rela;
}sets[maxn];
int ans[maxn];
bool cmp(Edge a,Edge b){
return a.dist < b.dist;
}
void init(int n){
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
}
int Find(int x){
if(x == sets[x].pa){
return x;
}
int tmp = sets[x].pa;
sets[x].pa = Find(tmp);
return sets[x].pa;
}
int main(){
int n, m;
while(scanf("%d%d",&n,&m)!=EOF){
init(n);
int a,b,c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a,&b,&c);
edges[i] = Edge(a,b,c,i);
}
sort(edges,edges+m,cmp);
int cnt = 0;
for(int i = 0; i < m; i++){
Edge & e = edges[i];
int rootx, rooty;
rootx = Find(e.from);
rooty = Find(e.to);
if(rootx == rooty){
continue;
}
sets[rooty].pa = rootx;
ans[cnt++] = i;
}
printf("%d\n",edges[ans[cnt-1]].dist);
printf("%d\n",cnt);
for(int i = 0; i < cnt; i++){
printf("%d %d\n",edges[ans[i]].from,edges[ans[i]].to);
}
}
return 0;
}

  

POJ 1861 ——Network——————【最小瓶颈生成树】的更多相关文章

  1. 【UVA 11354】 Bond (最小瓶颈生成树、树上倍增)

    [题意] n个点m条边的图 q次询问 找到一条从s到t的一条边 使所有边的最大危险系数最小 InputThere will be at most 5 cases in the input file.T ...

  2. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  3. 【最小瓶颈生成树】【最小生成树】【kruscal】bzoj1083 [SCOI2005]繁忙的都市

    本意是求最小瓶颈生成树,但是我们可以证明:最小生成树也是最小瓶颈生成树(其实我不会).数据范围很小,暴力kruscal即可. #include<cstdio> #include<al ...

  4. 【bzoj2429】[HAOI2006]聪明的猴子(图论--最小瓶颈生成树 模版题)

    题意:有M只猴子,他们的最大跳跃距离为Ai.树林中有N棵树露出了水面,给出了它们的坐标.问有多少只猴子能在这个地区露出水面的所有树冠上觅食. 解法:由于要尽量多的猴子能到达所有树冠,便用Kruskal ...

  5. POJ 1861 Network (MST)

    题意:求解最小生成树,以及最小瓶颈生成树上的瓶颈边. 思路:只是求最小生成树即可.瓶颈边就是生成树上权值最大的那条边. //#include <bits/stdc++.h> #includ ...

  6. BZOJ 3732 Network 最小瓶颈路

    题目大意:给出一个无向边,非常多询问,问x,y两地之间的最长路最短是多少. 思路:乍一看好像是二分啊. 的确这个题二分能够做.可是时间会慢非常多,有的题直接就T掉(NOIP2013货车运输). 事实上 ...

  7. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  8. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  9. POJ 1861 Network (模版kruskal算法)

    Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: Accepted: Special Judge Descripti ...

随机推荐

  1. 初探webapi

    在网上看了小牛之路的webapi那篇文章,所以自己也想偿试一下 一,webapi简介 目前使用Web服务的三种主流的方式是:远程过程调用(RPC),面向服务架构(SOA)以及表征性状态转移(REST) ...

  2. mysql 远程登录与表名大小写问题

    好久没写博客了,这段时间在学习一个开源的项目,里面使用到了mysql,好久没使用mysql了.在使用过程中遇到了一个问题,远程登陆.报错信息很明显,连接失败.解决思路如下: 1. 首先检查到服务器网络 ...

  3. 在GridView控件FooterTemplate内添加记录 Ver3

    重构此篇<在GridView控件FooterTemplate内添加记录 Ver2> http://www.cnblogs.com/insus/p/3270644.html 这有些缺陷,怎样 ...

  4. WC2019 冬眠记

    Day1 做高铁来广州 晚上开幕式,亮点在CCF的日常讲话.dzd有事换wh讲. 我们WC比赛的人数是最多的,性价比是最高的 然后掌声雷动 相信大家鼓掌是同意我的话 再次掌声雷动(雾 Day2-Day ...

  5. vtk-py求3d模型表面积

    模型格式:.obj 环境:python3.6+vtk7.1 vtk版: import vtk filename = "XXXX.obj" reader = vtk.vtkOBJRe ...

  6. MySQL 5.0的my.cnf配置选项(另外一种方式分类整理)

    一.   mysqld程序--目录和文件 basedir = path 使用给定目录作为根目录(安装目录). Show variables like “basedir”   //数据库中查看目录 da ...

  7. poj1811(pollard_rho模板)

    题目链接: http://poj.org/problem?id=1811 题意: 判断一个数 n (2 <= n < 2^54)是否为质数, 是的话输出 "Prime" ...

  8. 一些意想不到的小bug。

    一,当if的时候,很容易忘记相对的else,从而出现bug,要将背面消息考虑全面. 二,多个元素在同一行布局的时候,要考虑文字的换行还是省略号代替. 例如:左边一个文字,宽度不固定,右边一个图形,宽度 ...

  9. NSFileManager在初始化文件的时候一不留神就进入陷阱

    今天调试一个程序,内容是在手机一个本地路径生成一个缓存文件,在生成本地路径的时候犯了一个错误,本着求原因的精神调试了2个小时,终于找到原因了 刚开始断点调试的时候,执行到第13行,这里死活不给写入数据 ...

  10. react 部分语法补充

    jsx语法 todolist.js import React, { Component,Fragment } from 'react'; import './style.css' class Todo ...