点此看题面

大致题意: 让你在一张\(N*M\)的棋盘上摆放炮,使其无法互相攻击,问有多少种摆法。

辟谣

听某大佬说这是一道状压\(DP\)题,于是兴冲冲地去做,看完数据范围彻底懵了:\(N≤100\)!这么大的数据范围压死你!

好吧,其实这就是一道普通的\(DP\),与状压没有任何关系。

其实状压可以用来骗分,能得50。

考虑性质

对于这种题目,第一步肯定是考虑有没有什么比较重要的性质。

考虑炮的攻击方法,应该不难发现,每一行、每一列放的炮的数量不能超过\(2\)

保证每行不超过\(2\),应该很简单。

那么如何处理每列不超过\(2\)呢?这时就不难想到用\(f_{i,j,k}\)来表示当前处理到第\(i\)行,有\(j\)列有\(1\)个炮,\(k\)列有\(2\)个炮时的方案数

这样一来,应该就有一个比较清晰的思路了。

接下来,就是无比烦人的分类讨论

分类讨论

不难发现,这题的状态有很多转移方式,因此就需要用到分类讨论。

  • 第一种情况: 这一行什么棋子也不放。

    直接将\(f_{i,j,k}\)加上\(f_{i-1,j,k}\)即可。

  • 第二种情况: 在没有放过炮的一列上放一个炮。

    比较显然应从状态\((i-1,j-1,k)\)转移过来。

    \(∵\)在转移之前有\((m-i-j+1)\)列是没有放过炮的,

    \(∴\)放炮的方式共有\((m-i-j+1)\)种,

    \(∴\)将\(f_{i,j,k}\)加上\((m-i-j+1)*f_{i-1,j-1,k}\)。

  • 第三种情况: 在没有放过炮的两列上各放一个炮。

    此时的状态应从状态\((i-1,j-2,k)\)转移过来。

    \(∵\)在转移之前有\((m-i-j+2)\)列是没有放过炮的,

    \(∴\)放炮的方式共有\(C_{m-j-k+2}^2\)种,即\(\frac{(m-j-k+1)*(m-j-k+2)}2\)种,

    \(∴\)将\(f_{i,j,k}\)加上\(\frac{(m-j-k+1)*(m-j-k+2)}2*f_{i-1,j-2,k}\)。

  • 第四种情况: 在放过一个炮的一列上放一个炮。

    此时的状态应从状态\((i-1,j+1,k-1)\)转移过来。

    \(∵\)在转移之前有\((j+1)\)列是放过一个炮的,

    \(∴\)放炮的方式共有\((j+1)\)种,

    \(∴\)将\(f_{i,j,k}\)加上\((j+1)*f_{i-1,j+1,k-1}\)。

  • 第五种情况: 在放过一个炮的两列上各放一个炮。

    此时的状态应从状态\((i-1,j+2,k-2)\)转移过来。

    \(∵\)在转移之前有\((j+2)\)列是放过一个炮的,

    \(∴\)放炮的方式共有\(C_{j+2}^2\)种,即\(\frac{(j+1)*(j+2)}2\)种,

    \(∴\)将\(f_{i,j,k}\)加上\(\frac{(j+1)*(j+2)}2*f_{i-1,j+2,k-2}\)。

  • 第六种情况: 在没有放过炮的一列和放过一个炮的一列上各放一个炮。

    此时的状态应从状态\((i-1,j,k-1)\)转移过来。

    \(∵\)在转移之前有\((m-j-k+1)\)列是没有放过炮的,有\(j\)列是放过一个炮的,

    \(∴\)放炮的方式共有\((m-j-k+1)*j\)种,

    \(∴\)将\(f_{i,j,k}\)加上\((m-j-k+1)*j*f_{i-1,j,k-1}\)。

大致就是这\(6\)种情况了,不过取模之类的细节还是需要自己注意一下。

代码

#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define abs(x) ((x)<0?-(x):(x))
#define INF 1e9
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
#define ten(x) (((x)<<3)+((x)<<1))
#define MOD 9999973
#define N 100
using namespace std;
int n,m;
class FIO
{
private:
#define Fsize 100000
#define tc() (FinNow==FinEnd&&(FinEnd=(FinNow=Fin)+fread(Fin,1,Fsize,stdin),FinNow==FinEnd)?EOF:*FinNow++)
#define pc(ch) (FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int f,FoutSize,OutputTop;char ch,Fin[Fsize],*FinNow,*FinEnd,Fout[Fsize],OutputStack[Fsize];
public:
FIO() {FinNow=FinEnd=Fin;}
inline void read(int &x) {x=0,f=1;while(!isdigit(ch=tc())) f=ch^'-'?1:-1;while(x=ten(x)+(ch&15),isdigit(ch=tc()));x*=f;}
inline void read_char(char &x) {while(isspace(x=tc()));}
inline void read_string(string &x) {x="";while(isspace(ch=tc()));while(x+=ch,!isspace(ch=tc())) if(!~ch) return;}
inline void write(int x) {if(!x) return (void)pc('0');if(x<0) pc('-'),x=-x;while(x) OutputStack[++OutputTop]=x%10+48,x/=10;while(OutputTop) pc(OutputStack[OutputTop]),--OutputTop;}
inline void write_char(char x) {pc(x);}
inline void write_string(string x) {register int i,len=x.length();for(i=0;i<len;++i) pc(x[i]);}
inline void end() {fwrite(Fout,1,FoutSize,stdout);}
}F;
class Class_DP//DP
{
private:
int f[N+5][N+5][N+5];//用f[i][j][k]来表示当前处理到第i行,有j列有1个炮,k列有2个炮时的方案数
public:
inline int GetAns()
{
register int i,j,k,lim,ans=0;
for(i=f[0][0][0]=1;i<=n;++i)//枚举行
{
for(j=lim=min(i<<1,m);~j;--j) for(k=lim-j;~k;--k)//枚举放过一个棋子和两个棋子的列数
{
f[i][j][k]=f[i-1][j][k];//第一种情况
if(j>=1) Inc(f[i][j][k],1LL*f[i-1][j-1][k]*(m-j-k+1)%MOD);//第二种情况
if(j>=2) Inc(f[i][j][k],1LL*f[i-1][j-2][k]*((m-j-k+1)*(m-j-k+2)>>1)%MOD);//第三种情况
if(k>=1) Inc(f[i][j][k],1LL*f[i-1][j+1][k-1]*(j+1)%MOD);//第四种情况
if(k>=2) Inc(f[i][j][k],1LL*f[i-1][j+2][k-2]*((j+1)*(j+2)>>1)%MOD);//第五种情况
if(j>=1&&k>=1) Inc(f[i][j][k],1LL*f[i-1][j][k-1]*(m-j-k+1)%MOD*j%MOD);//第六种情况
}
}
for(i=lim=min(n<<1,m);~i;--i) for(j=lim-i;~j;--j) Inc(ans,f[n][i][j]);//统计答案
return ans;
}
}DP;
int main()
{
F.read(n),F.read(m),F.write(DP.GetAns());
return F.end(),0;
}

【洛谷2051】[AHOI2009] 中国象棋(烦人的动态规划)的更多相关文章

  1. BZOJ1801或洛谷2051 [AHOI2009]中国象棋

    BZOJ原题链接 洛谷原题链接 这题挺难想状态的,刚看题感觉是状压,但数据\(100\)显然不可能. 注意到每行每列只能放\(0\sim 2\)个棋子,所以我们可以将这个写入状态. 设\(f[i][j ...

  2. 洛谷.2051.[AHOI2009]中国象棋(DP)

    题目链接 /* 每行每列不能超过2个棋子,求方案数 前面行对后面行的影响只有 放了0个.1个.2个 棋子的列数,与排列方式无关 所以设f[i][j][k]表示前i行,放了0个棋子的有j列,放了1个棋子 ...

  3. 洛谷2051 [AHOI2009]中国象棋

    题目链接 题意概述:n行m列棋盘放若干个棋子每行每列最多两个求方案总数,答案对9999973取模. 可以比较容易看出这是个dp,设f[i][j][k]表示前i行j列放1个棋子k列放2个棋子的方案总数. ...

  4. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  5. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  6. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  7. 洛谷 P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  8. 洛谷P2051 [AHOI2009]中国象棋(dp)

    题面 luogu 题解 \(50pts:\)显然是\(3\)进制状压\(dp\) \(100pts:\) 一行一行地考虑 \(f[i][j][k]\)表示前\(i\)行,有\(j\)列放了一个,有\( ...

  9. 洛谷P2051 [AHOI2009] 中国象棋(状压dp)

    题目简介 n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100 题目分析 算法考虑 考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压D ...

  10. luogu 2051 [AHOI2009]中国象棋

    luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...

随机推荐

  1. 51nod 1405【DFS】

    思路: 对于结点 u 的子节点 v, 如果已经一直到结点 u 的答案ans[u],那么转移到对于结点 v,num[v] 为 v为根的树的结点个数,那么对于结点v的答案相对于结点u的答案来说, ans[ ...

  2. WPF动画——故事板(Storyboard)

    1.XAML代码 <Window x:Class="故事板.MainWindow" x:Name="window" xmlns="http:// ...

  3. ios 容错处理AvoidCrash

    程序因为很多原因容易出现崩溃问题,比如数组越界.空字符串等造成的崩溃 // 在AppDelegate 写如下代码 初始化防止程序因数组和字符串等崩溃问题 //初始化 AvoidCrash (常用对象防 ...

  4. JD孔_20160901

    1.买的 “[京东超市]GL格朗 耳温枪/电子体温计/温度计/耳温计EW-2”  http://item.jd.com/385507.html 2.

  5. D. Beautiful numbers

    题目链接:http://codeforces.com/problemset/problem/55/D D. Beautiful numbers time limit per test 4 second ...

  6. (转)不看绝对后悔的Linux三剑客之sed实战精讲

    不看绝对后悔的Linux三剑客之sed实战精讲 原文:http://blog.51cto.com/hujiangtao/1923718 二.Linux三剑客之sed命令精讲 1,前言 我们都知道,在L ...

  7. PHP session变量的销毁

    1.何为session? 相当于一个客户端(可以是浏览器.app.ftp等其他,而且同一个浏览器多开几个又算是不同的客户端)对服务器的一个访问,这个期间服务器为此建立一个唯一的标示(session_i ...

  8. Aura Component Skills & Tools

    本篇参考: https://trailhead.salesforce.com/content/learn/modules/lex_dev_lc_vf_fundamentals 不知不觉已经做了三年多的 ...

  9. Cucumber 步骤中传Data Table作为参数

    引用链接:http://cukes.info/step-definitions.html Data Tables Data Tables are handy for specifying a larg ...

  10. Java学习笔记--字符串和文件IO

    1.Java中的字符串类和字符的表示 2.区分String,StringBuilder和StringBuffer 3.从命令行中给main方法传递参数 4.文件操作 1 Java中的字符串和字符 1. ...