点此看题面

大致题意: 让你在一张\(N*M\)的棋盘上摆放炮,使其无法互相攻击,问有多少种摆法。

辟谣

听某大佬说这是一道状压\(DP\)题,于是兴冲冲地去做,看完数据范围彻底懵了:\(N≤100\)!这么大的数据范围压死你!

好吧,其实这就是一道普通的\(DP\),与状压没有任何关系。

其实状压可以用来骗分,能得50。

考虑性质

对于这种题目,第一步肯定是考虑有没有什么比较重要的性质。

考虑炮的攻击方法,应该不难发现,每一行、每一列放的炮的数量不能超过\(2\)

保证每行不超过\(2\),应该很简单。

那么如何处理每列不超过\(2\)呢?这时就不难想到用\(f_{i,j,k}\)来表示当前处理到第\(i\)行,有\(j\)列有\(1\)个炮,\(k\)列有\(2\)个炮时的方案数

这样一来,应该就有一个比较清晰的思路了。

接下来,就是无比烦人的分类讨论

分类讨论

不难发现,这题的状态有很多转移方式,因此就需要用到分类讨论。

  • 第一种情况: 这一行什么棋子也不放。

    直接将\(f_{i,j,k}\)加上\(f_{i-1,j,k}\)即可。

  • 第二种情况: 在没有放过炮的一列上放一个炮。

    比较显然应从状态\((i-1,j-1,k)\)转移过来。

    \(∵\)在转移之前有\((m-i-j+1)\)列是没有放过炮的,

    \(∴\)放炮的方式共有\((m-i-j+1)\)种,

    \(∴\)将\(f_{i,j,k}\)加上\((m-i-j+1)*f_{i-1,j-1,k}\)。

  • 第三种情况: 在没有放过炮的两列上各放一个炮。

    此时的状态应从状态\((i-1,j-2,k)\)转移过来。

    \(∵\)在转移之前有\((m-i-j+2)\)列是没有放过炮的,

    \(∴\)放炮的方式共有\(C_{m-j-k+2}^2\)种,即\(\frac{(m-j-k+1)*(m-j-k+2)}2\)种,

    \(∴\)将\(f_{i,j,k}\)加上\(\frac{(m-j-k+1)*(m-j-k+2)}2*f_{i-1,j-2,k}\)。

  • 第四种情况: 在放过一个炮的一列上放一个炮。

    此时的状态应从状态\((i-1,j+1,k-1)\)转移过来。

    \(∵\)在转移之前有\((j+1)\)列是放过一个炮的,

    \(∴\)放炮的方式共有\((j+1)\)种,

    \(∴\)将\(f_{i,j,k}\)加上\((j+1)*f_{i-1,j+1,k-1}\)。

  • 第五种情况: 在放过一个炮的两列上各放一个炮。

    此时的状态应从状态\((i-1,j+2,k-2)\)转移过来。

    \(∵\)在转移之前有\((j+2)\)列是放过一个炮的,

    \(∴\)放炮的方式共有\(C_{j+2}^2\)种,即\(\frac{(j+1)*(j+2)}2\)种,

    \(∴\)将\(f_{i,j,k}\)加上\(\frac{(j+1)*(j+2)}2*f_{i-1,j+2,k-2}\)。

  • 第六种情况: 在没有放过炮的一列和放过一个炮的一列上各放一个炮。

    此时的状态应从状态\((i-1,j,k-1)\)转移过来。

    \(∵\)在转移之前有\((m-j-k+1)\)列是没有放过炮的,有\(j\)列是放过一个炮的,

    \(∴\)放炮的方式共有\((m-j-k+1)*j\)种,

    \(∴\)将\(f_{i,j,k}\)加上\((m-j-k+1)*j*f_{i-1,j,k-1}\)。

大致就是这\(6\)种情况了,不过取模之类的细节还是需要自己注意一下。

代码

#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define abs(x) ((x)<0?-(x):(x))
#define INF 1e9
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
#define ten(x) (((x)<<3)+((x)<<1))
#define MOD 9999973
#define N 100
using namespace std;
int n,m;
class FIO
{
private:
#define Fsize 100000
#define tc() (FinNow==FinEnd&&(FinEnd=(FinNow=Fin)+fread(Fin,1,Fsize,stdin),FinNow==FinEnd)?EOF:*FinNow++)
#define pc(ch) (FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int f,FoutSize,OutputTop;char ch,Fin[Fsize],*FinNow,*FinEnd,Fout[Fsize],OutputStack[Fsize];
public:
FIO() {FinNow=FinEnd=Fin;}
inline void read(int &x) {x=0,f=1;while(!isdigit(ch=tc())) f=ch^'-'?1:-1;while(x=ten(x)+(ch&15),isdigit(ch=tc()));x*=f;}
inline void read_char(char &x) {while(isspace(x=tc()));}
inline void read_string(string &x) {x="";while(isspace(ch=tc()));while(x+=ch,!isspace(ch=tc())) if(!~ch) return;}
inline void write(int x) {if(!x) return (void)pc('0');if(x<0) pc('-'),x=-x;while(x) OutputStack[++OutputTop]=x%10+48,x/=10;while(OutputTop) pc(OutputStack[OutputTop]),--OutputTop;}
inline void write_char(char x) {pc(x);}
inline void write_string(string x) {register int i,len=x.length();for(i=0;i<len;++i) pc(x[i]);}
inline void end() {fwrite(Fout,1,FoutSize,stdout);}
}F;
class Class_DP//DP
{
private:
int f[N+5][N+5][N+5];//用f[i][j][k]来表示当前处理到第i行,有j列有1个炮,k列有2个炮时的方案数
public:
inline int GetAns()
{
register int i,j,k,lim,ans=0;
for(i=f[0][0][0]=1;i<=n;++i)//枚举行
{
for(j=lim=min(i<<1,m);~j;--j) for(k=lim-j;~k;--k)//枚举放过一个棋子和两个棋子的列数
{
f[i][j][k]=f[i-1][j][k];//第一种情况
if(j>=1) Inc(f[i][j][k],1LL*f[i-1][j-1][k]*(m-j-k+1)%MOD);//第二种情况
if(j>=2) Inc(f[i][j][k],1LL*f[i-1][j-2][k]*((m-j-k+1)*(m-j-k+2)>>1)%MOD);//第三种情况
if(k>=1) Inc(f[i][j][k],1LL*f[i-1][j+1][k-1]*(j+1)%MOD);//第四种情况
if(k>=2) Inc(f[i][j][k],1LL*f[i-1][j+2][k-2]*((j+1)*(j+2)>>1)%MOD);//第五种情况
if(j>=1&&k>=1) Inc(f[i][j][k],1LL*f[i-1][j][k-1]*(m-j-k+1)%MOD*j%MOD);//第六种情况
}
}
for(i=lim=min(n<<1,m);~i;--i) for(j=lim-i;~j;--j) Inc(ans,f[n][i][j]);//统计答案
return ans;
}
}DP;
int main()
{
F.read(n),F.read(m),F.write(DP.GetAns());
return F.end(),0;
}

【洛谷2051】[AHOI2009] 中国象棋(烦人的动态规划)的更多相关文章

  1. BZOJ1801或洛谷2051 [AHOI2009]中国象棋

    BZOJ原题链接 洛谷原题链接 这题挺难想状态的,刚看题感觉是状压,但数据\(100\)显然不可能. 注意到每行每列只能放\(0\sim 2\)个棋子,所以我们可以将这个写入状态. 设\(f[i][j ...

  2. 洛谷.2051.[AHOI2009]中国象棋(DP)

    题目链接 /* 每行每列不能超过2个棋子,求方案数 前面行对后面行的影响只有 放了0个.1个.2个 棋子的列数,与排列方式无关 所以设f[i][j][k]表示前i行,放了0个棋子的有j列,放了1个棋子 ...

  3. 洛谷2051 [AHOI2009]中国象棋

    题目链接 题意概述:n行m列棋盘放若干个棋子每行每列最多两个求方案总数,答案对9999973取模. 可以比较容易看出这是个dp,设f[i][j][k]表示前i行j列放1个棋子k列放2个棋子的方案总数. ...

  4. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  5. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  6. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  7. 洛谷 P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  8. 洛谷P2051 [AHOI2009]中国象棋(dp)

    题面 luogu 题解 \(50pts:\)显然是\(3\)进制状压\(dp\) \(100pts:\) 一行一行地考虑 \(f[i][j][k]\)表示前\(i\)行,有\(j\)列放了一个,有\( ...

  9. 洛谷P2051 [AHOI2009] 中国象棋(状压dp)

    题目简介 n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100 题目分析 算法考虑 考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压D ...

  10. luogu 2051 [AHOI2009]中国象棋

    luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...

随机推荐

  1. oracle数据库rownum讲解(转)

    https://blog.csdn.net/qq_40794266/article/details/78698321

  2. Mysql-15-mysql分布式应用

    1.分布式应用的概念和优势 分布式数据库是指利用高速网络将物理上分散的多个数据存储单元连接起来组成一个逻辑上统一的数据库.分布式数据库的基本思想是将原来集中式数据库中的数据分散存储到多个通过网络连接的 ...

  3. 2019南昌邀请赛网络赛:J distance on the tree

    1000ms 262144K   DSM(Data Structure Master) once learned about tree when he was preparing for NOIP(N ...

  4. gitlab web端使用

    https://jenkins.io/zh/doc/pipeline/tour/getting-started/ http://www.cnblogs.com/cheng95/p/6542036.ht ...

  5. Java基础笔记(九)—— 流程控制

    Java三大流程控制语句:顺序.选择.循环. if结构.if-else结构.多重if.嵌套if. public class Test { public static void main(String[ ...

  6. 利用xsltproc转换jtl报告到html报告

    使用Jmeter测试完后并不能直接生成html报告,而是jtl报告.这里我们可以用xsltproc来解决. xsltproc是由DanielVeillard用来C语言编写的是一个快速XSLT引擎,   ...

  7. Unity 行为树-基础

    .前言 Unity里面的行为树又名BehaviorTree,最常用在NPC的敌人逻辑中. 二.基础说明(转载) 1.行为树的调用时间为每帧: 2.每个节点的状态只能下面3个中的其一:成功Success ...

  8. P2161 [SHOI2009]会场预约 (线段树:线段树上的不重复覆盖数)

    题目描述 PP大厦有一间空的礼堂,可以为企业或者单位提供会议场地.这些会议中的大多数都需要连续几天的时间(个别的可能只需要一天),不过场地只有一个,所以不同的会议的时间申请不能够冲突.也就是说,前一个 ...

  9. java动态线程池LinkedBlockingQueue和SynchronousQueue比较

    import java.util.concurrent.Callable; public class MyCallable implements Callable<String> { pr ...

  10. 得到RequestVO

    import java.io.IOException; import java.nio.charset.Charset; import javax.servlet.ServletInputStream ...