HDU2837 Calculation(扩展欧拉定理)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3121 Accepted Submission(s):
778
for all n bigger than zero. Please calculate f(n)%m. (2 ≤ n , m ≤ 10^9, x^y
means the y th power of x).
which is the number of test cases. T lines follows.Each case consists of one
line containing two positive integers n and m.
24 20
25 20
5
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define int long long
using namespace std;
const int MAXN = 1e5 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, M, PhiM;
int fastpow(int a, int p, int mod) {
if(a == ) return p == ;
int base = ;
while(p) {
if(p & ) base = (base * a) % mod;
p >>= ; a = (a * a) % mod;
}
return base == ? mod : (base + mod)% mod;
}
int GetPhi(int x) {
int limit = sqrt(x), ans = x;
for(int i = ; i <= limit; i++) {
if(!(x % i)) ans = ans / i * (i - ) ;
while(!(x % i)) x /= i;
}
if(x > ) ans = ans / x * (x - );
return ans;
}
int F(int N, int mod) {
if(N < ) return N;
return fastpow((N % ), F(N / , GetPhi(mod)), mod);
}
main() {
int QwQ = read();
while(QwQ--) {
N = read(); M = read();
printf("%I64d\n", F(N, M));
}
return ;
}
/*
4
24 20
37 25
123456 321654
123456789 456789321
*/
HDU2837 Calculation(扩展欧拉定理)的更多相关文章
- [luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】
题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdot ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- SHOI 2017 相逢是问候(扩展欧拉定理+线段树)
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- 2018牛客网暑期ACM多校训练营(第四场) A - Ternary String - [欧拉降幂公式][扩展欧拉定理]
题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where ...
- 【CodeForces】906 D. Power Tower 扩展欧拉定理
[题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- [BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)
4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1313 Solved: 471[Submit][Stat ...
- CodeForces 907F Power Tower(扩展欧拉定理)
Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...
随机推荐
- Murano Weekly Meeting 2016.05.31
Meeting time: 2016.May.31 1:00~2:00 Chairperson: Kirill Zaitsev, from Mirantis Meeting summary: 1.A ...
- DEDE图集手工上传图片,加入水印
DEDE的图集手工上传图片,是一个非常好用的flash上传图片工具.但是如果我们希望上传的图片,带有自己网站指定的水印,却发现没有达到我们的要求--那么如果我们确实希望上传的图片,带有水印,怎么办?以 ...
- 让你分分钟学会 javascript 闭包
闭包,是 javascript 中重要的一个概念,对于初学者来讲,闭包是一个特别抽象的概念,特别是ECMA规范给的定义,如果没有实战经验,你很难从定义去理解它.因此,本文不会对闭包的概念进行大篇幅描述 ...
- 深入.NET框架。
1.Microsoft.NET框架结构是一个面向网络,支持各种用户终端的开发平台. 2..NET框架的主要内容有CLR,FCL,ADO.NET,XML,ASP.NET,WinForms和WebSeri ...
- razor表单验证
1.验证注解(Model) public class Student { //默认不能为空 [Required(ErrorMessage ="姓名不能为空")] [StringLe ...
- vue监听input标签的value值方法
<input id="materialSearch" type="text" @keyup.enter="search" @input ...
- Android setUserVisibleHint-- fragment真正的onResume和onPause方法
这个情况仅适合与多个fragment之间切换时统计,而非activity和fragment同时交互,因当时项目为首页4个fargment时长统计,因此适合,经下面网友评论指出,特在这里写出此问题,因最 ...
- python字符转码
字符的编码与转码 demo UTF-8 转GBK python2.7 默认编码ASCII 没有转Unicode 直接转GBK 1 .系统的默认编码是ASCII , 程序的指定编码是UTF-8,在enc ...
- SharePoint 2010 网络上的开发经验和资源
sharepoint 集成 Exchange 基于OWA方式获取Exchange中未读邮件 http://www.cnblogs.com/jinho/archive/2011/09/17/21798 ...
- TeamViewer 软件完全卸载
TeamViewer 软件似乎用于商业环境中 - 彻底卸载 Windows 1. 检测为商业用途该软件似乎用于商业环境中.请注意:免费版仅供个人使用.您的会话将在 5 分钟后终止. 2.1 Close ...