BZOJ1855 [Scoi2010]股票交易 【单调队列优化dp】
题目链接
题解
设\(f[i][j]\)表示第\(i\)天结束时拥有\(j\)张股票时的最大收益
若\(i \le W\),显然在这之前不可能有交易
\]
否则,就有三种选择:
①购买
\]
②卖出
\]
③什么也不做
\]
其中③总共是\(O(n^2)\)的
①和②如果逐个枚举是\(O(n^3)\)的,无法承受
拆开式子可发现可以用单调队列优化成\(O(n^2)\)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define cls(s) memset(s,-0x3f3f3f3f,sizeof(s))
using namespace std;
const int maxn = 2005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int f[maxn][maxn],T,P,W,ap[maxn],bp[maxn],as[maxn],bs[maxn];
struct node{
int k,v;
}q[maxn];
int head,tail;
int main(){
T = read(); P = read(); W = read();
REP(i,T) ap[i] = read(),bp[i] = read(),as[i] = read(),bs[i] = read();
cls(f); f[0][0] = 0; int ans = 0;
for (int i = 1; i <= T; i++){
for (int j = 0; j <= P; j++) f[i][j] = f[i - 1][j];
if (i <= W){
for (int j = 0; j <= as[i]; j++)
f[i][j] = max(f[i][j],-ap[i] * j);
}
else {
head = 0; tail = -1;
for (int j = 0; j <= P; j++){
while (head <= tail && (j - q[head].k) > as[i]) head++;
while (head <= tail && q[tail].v < f[i - W - 1][j] + ap[i] * j) tail--;
q[++tail] = (node){j,f[i - W - 1][j] + ap[i] * j};
f[i][j] = max(f[i][j],q[head].v - ap[i] * j);
}
head = 0; tail = -1;
for (int j = P; j >= 0; j--){
while (head <= tail && (q[head].k - j) > bs[i]) head++;
while (head <= tail && q[tail].v < f[i - W - 1][j] + bp[i] * j) tail--;
q[++tail] = (node){j,f[i - W - 1][j] + bp[i] * j};
f[i][j] = max(f[i][j],q[head].v - bp[i] * j);
}
}
ans = max(ans,f[i][0]);
}
printf("%d\n",ans);
return 0;
}
BZOJ1855 [Scoi2010]股票交易 【单调队列优化dp】的更多相关文章
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401
这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...
- 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP
上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...
- 1855: [Scoi2010]股票交易[单调队列优化DP]
1855: [Scoi2010]股票交易 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1083 Solved: 519[Submit][Status] ...
- LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)
传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...
- SCOI 股票交易 单调队列优化dp
这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...
- BZOJ 1855 股票交易 - 单调队列优化dp
传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...
- BZOJ1855 股票交易 单调队列优化 DP
描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as, 某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...
- BZOJ1855 [Scoi2010]股票交易[单调队列dp]
题 题面有点复杂,不概括了. 后面的状态有前面的最优解获得大致方向是dp.先是瞎想了个$f[i][j]$表示第$i$天手里有$j$张股票时最大收入(当天无所谓买不买). 然后写了一个$O(n^4)$状 ...
- 股票交易——单调队列优化DP
题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...
随机推荐
- Linux自带mariadb卸载
MySQL安装过程中报错: dpkg: regarding mysql-community-server_5.6.39-1debian9_i386.deb containing mysql-commu ...
- 《JSON笔记之二》----封装JSONUtil
许多java开发人员对于fastjson再也熟悉不过了,这是alibaba开源的依赖,使用fastjson可以使我们很容易的把请求json串转换成为我们所需要的对象.list.map等对象格式,对于开 ...
- MySQL5.6基于MHA方式高可用搭建
master 10.205.22.185 #MHA node slave1 10.205.22.186 #MHA node+MHA manager slave2 10.205.22.187 #MH ...
- CentOS7部署LAMP+xcache (php-fpm模式)
此次实验准备3台CentOS7服务器,版本号:CentOS Linux release 7.2.1511. 搭建Apache服务器 通过 yum -y install httpd 安装Apache: ...
- 神经网络系列学习笔记(一)——神经网络之ANN学习资料汇总
ANN tutorial: http://adventuresinmachinelearning.com/neural-networks-tutorial/ https://www.cs.toront ...
- PHP队列的实现
队列是一种特殊的线性表,它只允许在表的前端,可以称之为front,进行删除操作:而在表的后端,可以称之为rear进行插入操作.队列和堆栈一样,是一种操作受限制的线性表,和堆栈不同之处在于:队列是遵循“ ...
- C# 设定弹出窗体位置
一.C#中弹出窗口位置 加入命名空间 using System.Drawing using System.Windows.Forms 假定窗口名为form1,则 //窗体位置在屏幕中间 form1.S ...
- Pandas 数值计算和统计基础
1.(1) # 基本参数:axis.skipna import numpy as np import pandas as pd df = pd.DataFrame({'key1':[4,5,3,np. ...
- talent-aio源码阅读小记(二)
我们上一篇提到了talent-aio的四类Task:DecodeRunnable.HandlerRunnable.SendRunnable.CloseRunnable,并且分析了这些task的基类Ab ...
- 代理缓存服务之Squid
代理缓存服务 Squid是linux系统中最为流行的一款高性能代理服务软件,通常用作Web网站的前置缓存服务,能够代替用户向网站服务器请求页面数据并进行缓存. 简单来说,Squid服务程序会按照收到的 ...