题目链接

BZOJ1855

题解

设\(f[i][j]\)表示第\(i\)天结束时拥有\(j\)张股票时的最大收益

若\(i \le W\),显然在这之前不可能有交易

\[f[i][j] = max\{f[i - 1][j],-ap[i] * j\} \quad [j \le as[i]]
\]

否则,就有三种选择:

①购买

\[f[i][j] = max\{f[i - W - 1][k] - ap[i] * (j - k)\} \quad[k \le j][j - k \le as[i]]
\]

②卖出

\[f[i][j] = max\{f[i - W - 1][k] + bp[i] * (k - j)\} \quad[k \ge j][k - j \le bs[i]]
\]

③什么也不做

\[f[i][j] = max\{f[i][j],f[i - 1][j]\}
\]

其中③总共是\(O(n^2)\)的

①和②如果逐个枚举是\(O(n^3)\)的,无法承受

拆开式子可发现可以用单调队列优化成\(O(n^2)\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define cls(s) memset(s,-0x3f3f3f3f,sizeof(s))
using namespace std;
const int maxn = 2005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int f[maxn][maxn],T,P,W,ap[maxn],bp[maxn],as[maxn],bs[maxn];
struct node{
int k,v;
}q[maxn];
int head,tail;
int main(){
T = read(); P = read(); W = read();
REP(i,T) ap[i] = read(),bp[i] = read(),as[i] = read(),bs[i] = read();
cls(f); f[0][0] = 0; int ans = 0;
for (int i = 1; i <= T; i++){
for (int j = 0; j <= P; j++) f[i][j] = f[i - 1][j];
if (i <= W){
for (int j = 0; j <= as[i]; j++)
f[i][j] = max(f[i][j],-ap[i] * j);
}
else {
head = 0; tail = -1;
for (int j = 0; j <= P; j++){
while (head <= tail && (j - q[head].k) > as[i]) head++;
while (head <= tail && q[tail].v < f[i - W - 1][j] + ap[i] * j) tail--;
q[++tail] = (node){j,f[i - W - 1][j] + ap[i] * j};
f[i][j] = max(f[i][j],q[head].v - ap[i] * j);
}
head = 0; tail = -1;
for (int j = P; j >= 0; j--){
while (head <= tail && (q[head].k - j) > bs[i]) head++;
while (head <= tail && q[tail].v < f[i - W - 1][j] + bp[i] * j) tail--;
q[++tail] = (node){j,f[i - W - 1][j] + bp[i] * j};
f[i][j] = max(f[i][j],q[head].v - bp[i] * j);
}
}
ans = max(ans,f[i][0]);
}
printf("%d\n",ans);
return 0;
}

BZOJ1855 [Scoi2010]股票交易 【单调队列优化dp】的更多相关文章

  1. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  2. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  3. 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP

    上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...

  4. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  5. LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)

    传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...

  6. SCOI 股票交易 单调队列优化dp

    这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...

  7. BZOJ 1855 股票交易 - 单调队列优化dp

    传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...

  8. BZOJ1855 股票交易 单调队列优化 DP

    描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as,  某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...

  9. BZOJ1855 [Scoi2010]股票交易[单调队列dp]

    题 题面有点复杂,不概括了. 后面的状态有前面的最优解获得大致方向是dp.先是瞎想了个$f[i][j]$表示第$i$天手里有$j$张股票时最大收入(当天无所谓买不买). 然后写了一个$O(n^4)$状 ...

  10. 股票交易——单调队列优化DP

    题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...

随机推荐

  1. java使用apache-poi生成excel表格

    public static void main(String[] args) throws IOException { // TODO Auto-generated method stub //创建一 ...

  2. 基于LNMP环境的ssh2扩展

    openssl: 加密算法集合,C语言实现 libssh2:ssh2协议库库,C语言实现 PECL/ssh2: libssh2的php扩展,允许php程序调用libssh2中的函数 依赖关系:PECL ...

  3. System.gc()日志分析

    打开日志:运行配置---XX:+PrintGCDetails 示例程序: package com.test; public class Test { private Object instance = ...

  4. JSON后台处理特殊字符方法,在JSONArray.fromObject转换时处理

    /** * 替换一个字符串中的某些指定字符 * @param strData String 原始字符串 * @param regex String 要替换的字符串 * @param replaceme ...

  5. (二)活用ComponentScan

    项目改造成spring cloud项目后,有非常多组件是复用的,比如(一)敏感信息混淆的组件,比如数据库.Redis等配置, 比如常用的api组件Swagger配置.每个微服务组件里都会有若干个组件随 ...

  6. tp5简单构造

    application 应用目录 网站核心index前台目录 controller 控制器admin 后台目录 model 数据模型view 视图extend 静态类库目录public 静态资源和入口 ...

  7. Django自带后台管理配置

    Django自带后台管理的配置 创建项目和应用 修改配置文件 数据库配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql' ...

  8. C语言实例解析精粹学习笔记——29

    题目: 将字符行内单字之间的空格平均分配插入到单字之间,以实现字符行排版.也就是输入一个英文句子,单词之间的空格数目不同,将这些空格数平均分配到单词之间,重新输出. 代码如下(是原书中配套的代码,只是 ...

  9. python—— 文件的打开模式和文件对象方法 & os、os.path 模块中关于文件、目录常用的函数使用方法

    引用自“鱼c工作室”     文件的打开模式和文件对象方法  : https://fishc.com.cn/forum.php?mod=viewthread&tid=45279&ext ...

  10. poj 3087 直接模拟

    题意:意思就是,s1,和s2两堆牌,然后先s2一张再s1,最后会出现一个s12序列,例如s1 AHAH S2 HAHA 然后s12为HAAHHAAH,然后前面一部分给s1,后面一部分给s2,然后再重复 ...