第一种方法是决策单调性优化DP。

决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优。

根号函数是一个典型的具有决策单调性的函数,由于根号函数斜率递减,所以i决策的贡献的增长速度必定比j快。

于是使用基础的决策单调性优化即可。

注意两个问题,一是DP函数要存实数而不能存整数,因为先取整会丢失在后面的判断中需要的信息。二是记录决策作用区间的时候左端点要实时更新,即下面的p[st].l++,否则在二分时会出现错误。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
double f[N],g[N];
int n,st,ed,h[N];
struct P{ int l,r,p; }q[N]; int Abs(int x){ return (x>) ? x : -x; }
double cal(int x,int y){ return h[x]-h[y]+sqrt(Abs(y-x)); } int find(P a,int b){
int L=a.l,R=a.r;
while (L<R){
int mid=(L+R)>>;
if (cal(a.p,mid)>=cal(b,mid)) L=mid+; else R=mid;
}
return L;
} void work(double f[]){
st=ed=; q[]=(P){,n,};
rep(i,,n){
q[st].l++; if (q[st].l>q[st].r) st++;
f[i]=cal(q[st].p,i);
if (st>ed || (cal(q[ed].p,n)<cal(i,n))){
while (st<=ed && cal(q[ed].p,q[ed].l)<cal(i,q[ed].l)) ed--;
if (st>ed) q[++ed]=(P){i,n,i};
else{
int t=find(q[ed],i); q[ed].r=t-; q[++ed]=(P){t,n,i};
}
}
}
} int main(){
scanf("%d",&n);
rep(i,,n) scanf("%d",&h[i]);
work(f); reverse(h+,h+n+);
work(g); reverse(g+,g+n+);
rep(i,,n) printf("%d\n",max((int)ceil(max(f[i],g[i])),));
return ;
}

第二种方法是分块。

这题中,对于固定的i,sqrt(i-j)只有O(sqrt(n))种取值,而每种取值的区间长度也只有O(sqrt(n))个。

预处理从每个数开始后O(sqrt(n))个数中的最大值,暴力枚举sqrt(i-j)的取值更新答案。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=,K=;
int n,ans,h[N],mx[N][]; int main(){
freopen("bzoj4850.in","r",stdin);
freopen("bzoj4850.out","w",stdout);
scanf("%d",&n);
rep(i,,n) scanf("%d",&h[i]);
rep(i,,n){
mx[i][]=h[i];
rep(j,,min(K,n-i+)) mx[i][j]=max(mx[i][j-],h[i+j-]);
}
rep(i,,n){
ans=;
for (int pos=i,j=,nxt; pos!=; j++)
nxt=pos-,pos=max(pos-j*+,),ans=max(ans,mx[pos][nxt-pos+]-h[i]+j);
for (int pos,j=,nxt=i; nxt!=n; j++)
pos=nxt+,nxt=min(nxt+j*-,n),ans=max(ans,mx[pos][nxt-pos+]-h[i]+j);
printf("%d\n",ans);
}
return ;
}

[BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)的更多相关文章

  1. Lightning Conductor 洛谷P3515 决策单调性优化DP

    遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...

  2. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  3. 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)

    传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...

  4. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  5. 决策单调性优化dp 专题练习

    决策单调性优化dp 专题练习 优化方法总结 一.斜率优化 对于形如 \(dp[i]=dp[j]+(i-j)*(i-j)\)类型的转移方程,维护一个上凸包或者下凸包,找到切点快速求解 技法: 1.单调队 ...

  6. 洛谷 P5897 - [IOI2013]wombats(决策单调性优化 dp+线段树分块)

    题面传送门 首先注意到这次行数与列数不同阶,列数只有 \(200\),而行数高达 \(5000\),因此可以考虑以行为下标建线段树,线段树上每个区间 \([l,r]\) 开一个 \(200\times ...

  7. BZOJ4899: 记忆的轮廓【概率期望DP】【决策单调性优化DP】

    Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...

  8. 2018.10.14 NOIP训练 猜数游戏(决策单调性优化dp)

    传送门 一道神奇的dp题. 这题的决策单调性优化跟普通的不同. 首先发现这道题只跟r−lr-lr−l有关. 然后定义状态f[i][j]f[i][j]f[i][j]表示猜范围为[L,L+i−1][L,L ...

  9. 算法学习——决策单调性优化DP

    update in 2019.1.21 优化了一下文中年代久远的代码 的格式…… 什么是决策单调性? 在满足决策单调性的情况下,通常决策点会形如1111112222224444445555588888 ...

随机推荐

  1. 配置多个ssh-key

    搞了三天没搞出来,还在男朋友面前哭了一场,真心觉得我只该吃屎,我好没用.哎.. 首先在上一篇记录了如何生成ssh-key,并使本地可以通过ssh的方式克隆和推送项目.但如果你有个github账号,有个 ...

  2. vue开发者工具vue-devtools-4.1.4_0.crx谷歌插件下载及安装

    网盘地址: https://pan.baidu.com/s/14PoaihUHQZEJtiHNWUmdjg 下载好后 谷歌浏览器中扩展程序,开启开发者模式,将下载的文件拖到窗口中即可 然后重启浏览器 ...

  3. Python Challenge 第 5 关攻略:peak

    # -*- coding: utf-8 -*- # @Time : 2018/9/26 14:03 # @Author : cxa # @File : pickledemo.py # @Softwar ...

  4. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂

    题目链接: https://nanti.jisuanke.com/t/17115 题意: 询问硬币K次,正面朝上次数为偶数. 思路: dp[i][0] = 下* dp[i-1][0] + 上*dp[i ...

  5. 将python脚本转换成exe文件--pyinstaller

    遇到的大坑: 直接运行python文件效果:         执行 pyinstaller  -F -w  -p  -i ./123.ico  ./main.py    在dict文件夹下生成exe文 ...

  6. java基础18 String字符串和Object类(以及“equals” 和 “==”的解析)

    一.String字符串 问:笔试题:new String("abc")创建了几个对象?答:两个对象,一个对象是 位于堆内存,一个对象位于字符串常量池 class Demo17 { ...

  7. 在Eclipse中建立Maven工程

  8. git ——本地项目上传到git

    1.(先进入项目文件夹)通过命令 git init 把这个目录变成git可以管理的仓库 git init 2.把文件添加到版本库中,使用命令 git add .添加到暂存区里面去,不要忘记后面的小数点 ...

  9. 再谈OPENCV(转)

    转自:http://blog.csdn.net/carson2005/article/details/6979806 尽管之前写过一篇关于OpenCV的介绍(http://blog.csdn.net/ ...

  10. Robust Mesh Watermarking

    之前看了一篇题为"Robust Mesh Watermarking"的论文,查阅资料的时候发现了一篇与之很相似的名为"三维模型数字水印系统的设计与实现"的中文论 ...