传送门啦

这个题就是tarjan强连通分量与入度的例题了。

思路:

利用缩点的思想,先预处理一下所有的强连通分量,然后把每个强连通分量内的所有节点看做一个节点,然后处理一张新图,然后检查每个点的入度,然后取入度为 0 的点(缩点后)的个数,即为信息出发点。

可能有人想问为什么??

大体说明一下:

1.充分性证明:如果入度为 0 的点不是信息出发点,那么这个点必定不会接收到任何节点发出的信息,因为它的入度为 0 。

2.必要性证明:如果信息出发点不是入度为0的点,那么其必有入度点,使其覆盖点更多,而我们要找至少多少个点。

还是先明确一下各个数组的意思吧:

 dfn[i]:i点的时间戳

 low[i],表示这个点以及其子孙节点连的所有点中dfn最小的值

 stack[],表示当前所有可能能构成是强连通分量的点。

 ins[i],表示 i 是否在stack[ ]数组中

 num[i],表示第 i 个强连通分量中有多少个点

 belong[i],表示第 i 点在哪一个强连通分量里

 in[i]:表示第 i 个强连通分量的入度是多少。

以下就是怎么处理入度:

	for(int i=1;i<=m;i++){
if(belong[edge[i].from] != belong[edge[i].to])
in[belong[edge[i].to]]++;
}

解释一下:

枚举边,比较这条边起点和终点是否在同一个强连通分量中,如果不在,这条边终点的入度++

AC代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 1e5 + 5;
const int maxm = 5e5 + 6; int n,m,u,v;
int head[maxn],tot;
int dfn[maxn],low[maxn],ind;
int stack[maxn],top,belong[maxn],num[maxn],cnt;
int in[maxn];//表示某个点的入度
int ans;
bool ins[maxn];
struct Edge{
int from,to,next;
}edge[maxm]; void add(int u,int v){
edge[++tot].to = v;
edge[tot].from = u;
edge[tot].next = head[u];
head[u] = tot;
} int read(){
char ch = getchar();
int f = 1 , x = 0;
while(ch > '9' || ch < '0'){
if(ch == '-') f = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9'){
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
} void tarjan(int x){
dfn[x] = low[x] = ++ind;
stack[++top] = x;
ins[x] = true;
for(int i=head[x];i;i=edge[i].next){
int v = edge[i].to;
if(ins[v]) low[x] = min(low[x] , dfn[v]);
if(!dfn[v]){
tarjan(v);
low[x] = min(low[v] , low[x]);
}
}
int k;
if(dfn[x] == low[x]){
++cnt;
do{
k = stack[top];
num[cnt]++;
top--;
ins[k] = false;
belong[k] = cnt;
} while(k != x);
}
} int main(){
n = read(); m = read();
for(int i=1;i<=m;i++){
u = read(); v = read();
add(u , v);
}
for(int i = 1;i <= n ;++i) belong[i] = i;
for(int i=1;i<=n;i++)
if(!dfn[i]) tarjan(i); for(int i=1;i<=m;i++){
if(belong[edge[i].from] != belong[edge[i].to])
in[belong[edge[i].to]]++;
}
for(int i=1;i<=cnt;i++)
if(in[i] == 0)
ans++;
printf("%d\n",ans);
return 0;
}

洛谷P2002消息扩散的更多相关文章

  1. tarjan算法比较详细的讲解&&tarjan常见疑难解答&&洛谷P2002 消息扩散题解

    因为有大佬写的比我更长更具体,所以我也就写写总结一下了 引入: 众所周知,很多图中有个东西名叫环. 对于这个东西很多算法都很头疼.(suchas 迪杰斯特拉) 更深层:环属于强联通分量(strongl ...

  2. 洛谷—— P2002 消息扩散

    P2002 消息扩散 题目背景 本场比赛第一题,给个简单的吧,这 100 分先拿着. 题目描述 有n个城市,中间有单向道路连接,消息会沿着道路扩散,现在给出n个城市及其之间的道路,问至少需要在几个城市 ...

  3. 洛谷P2002 消息扩散

    题目背景 本场比赛第一题,给个简单的吧,这 100 分先拿着. 题目描述 有n个城市,中间有单向道路连接,消息会沿着道路扩散,现在给出n个城市及其之间的道路,问至少需要在几个城市发布消息才能让这所有n ...

  4. 洛谷 P2002 消息扩散

    题目背景 本场比赛第一题,给个简单的吧,这 100 分先拿着. 题目描述 有n个城市,中间有单向道路连接,消息会沿着道路扩散,现在给出n个城市及其之间的道路,问至少需要在几个城市发布消息才能让这所有n ...

  5. Luogu P2002 消息扩散&&P1262 间谍网络

    怕自己太久没写Tarjan了就会把这种神仙算法忘掉. 其实这种类型的图论题的套路还是比较简单且显然的. P2002 消息扩散 很显然的题目,因为在一个环(其实就是强连通分量)中的城市都只需要让其中一个 ...

  6. 题解【洛谷P2002】消息扩散

    题面 题解 \(Tarjan\)裸题. \(Tarjan\)缩点后统计入度为\(0\)的强连通分量个数,输出即可. 代码 #include <iostream> #include < ...

  7. P2002 消息扩散(缩点)

    描述:https://www.luogu.com.cn/problem/P2002 有n个城市,中间有单向道路连接,消息会沿着道路扩散,现在给出n个城市及其之间的道路,问至少需要在几个城市发布消息才能 ...

  8. P2002 消息扩散[SCC缩点]

    题目描述 有n个城市,中间有单向道路连接,消息会沿着道路扩散,现在给出n个城市及其之间的道路,问至少需要在几个城市发布消息才能让这所有n个城市都得到消息. 输入格式 第一行两个整数n,m表示n个城市, ...

  9. 【luogu P2002 消息扩散】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2002 缩点把原图变为DAG,再在DAG上判断找入度为0的点的个数. 注意一点出度为0的点的个数不等于入度为0 ...

随机推荐

  1. bzoj 3853 : GCD Array

    搬运题解Claris:1 n d v相当于给$a[x]+=v[\gcd(x,n)=d]$ $\begin{eqnarray*}&&v[\gcd(x,n)=d]\\&=& ...

  2. HTTP状态码的含义: 200:400:403:404:408:500:503:504

    http协议的状态码 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态码. 100(继续) 请求者应当继续提出请求.服务器返回此代码表示已收到请求的第一部分,正在等待其余部分. 101( ...

  3. Python 个人的失误记录之str.replace

    1. replace 替换列表中元素的部分内容后返回列表 2018.06.08 错误操作 -- 这样并不能改变改变列表内的元素 data = [', '决不能回复---它'] data[2].repl ...

  4. 2018 CTSC&APIO 游记

    CTSC 居然是CTSC先考,弄得我有些意外. 5.6 早上5:30乘坐高铁来到北京,差不多下午了吧,具体几点忘记了,然后来到宾馆   试机也没有去,就直接在宾馆颓废了. 5.7 考试的第一天,6:3 ...

  5. Linux运维五:定时任务crond服务

    一.crond简介 crond是linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程,与windows下的计划任务类似,当安装完成操作系统后,默认会安装此服务工具,并且会自动启动cro ...

  6. 使用traefik作为kubernetes的ingress

    目录 说明 部署 创建一个独立的命名空间 配置rbac授权 配置secret 创建一个configmap用于存放traefik的配置文件 配置traefik的deployment文件 配置服务 通过p ...

  7. 科学计算三维可视化---TVTK管线与数据加载(用IVTK根据观察管线)

    一:用IVTK根据观察管线 (一)引入该工具 from tvtk.tools import ivtk 可能需要安装pygments pip3 install pygments (二)使用ivtk显示立 ...

  8. webapi框架搭建-安全机制(二)-身份验证

    webapi框架搭建系列博客 身份验证(authentication)的责任是识别出http请求者的身份,除此之外尽量不要管其它的事.webapi的authentication我用authentica ...

  9. ajax状态码--转他人的

    var getXmlHttpRequest = function () { try{ //主流浏览器提供了XMLHttpRequest对象 return new XMLHttpRequest(); } ...

  10. bzoj千题计划160:bzoj2599: [IOI2011]Race

    http://www.lydsy.com/JudgeOnline/problem.php?id=2599 点分治 mi[i] 记录边权和为i时的最少边数 先更新答案,再更新mi数组,换根时清空mi # ...