一:TVTK库可视化实例

Plot3D文件知识:PLOT3D 数据格式

PLOT3D文件分为网格文件(XYZ 文件), 空气动力学结果文件 (Q 文件)和通用结果文件(函数文件 + 函数名称文件)。网格文件中可加入所谓的IBlank参数。

(一)标量数据可视化(等值面)

generate_values()创建等值面

from tvtk.api import tvtk
from Tvtkfunc import ivtk_scene,event_loop def read_data(): #导入数据
plot3d = tvtk.MultiBlockPLOT3DReader(
xyz_file_name="comxyz.bin", #网格文件
q_file_name="combq.bin", #开启动力学结果文件
scalar_function_number = , #设置标量数据数量
vector_function_number=, #设置矢量数据数量
) #读入Plot3D数据
plot3d.update() #让plot3D计算器输出数据
return plot3d plot3d = read_data()
grid = plot3d.output.get_block() #获取读入的数据集对象 con = tvtk.ContourFilter() #创建等值面对象
con.set_input_data(grid) #将网格与其绑定
con.generate_values(,grid.point_data.scalars.range) #指定轮廓数和数据范围 其中轮廓数越大,越丰富多彩 #映射颜色最小红色,最大蓝色 m = tvtk.PolyDataMapper(scalar_range=grid.point_data.scalars.range, #设置映射器的变量范围属性
input_connection=con.output_port)
a = tvtk.Actor(mapper=m)
a.property.opacity = 0.5 #设置透明度为0. win = ivtk_scene(a)
win.scene.isometric_view()
event_loop()

set_value设置每个等值面的值

第一个参数是指定第几个等值面,第二个参数是设置该等值面的值
set_value(,0.3)

(二)矢量数据可视化(有数值和方向)

箭头大小可以表示标量信息,箭头方向可以表示矢量的方向
为了能够在矢量数据网格中放置箭头符号,我们可以使用TVTK库中提供的Glyph3D符号化技术,可以产生放缩,着色,和具有方向的符号

在一般情况下,由于矢量数据过于密集,为了使得绘制速度更快,让箭头的密度适中,我们可以使用降维的方法,来降低数据的密度

from tvtk.api import tvtk
from Tvtkfunc import ivtk_scene,event_loop def read_data(): #导入数据
plot3d = tvtk.MultiBlockPLOT3DReader(
xyz_file_name="comxyz.bin", #网格文件
q_file_name="combq.bin", #开启动力学结果文件
scalar_function_number = , #设置标量数据数量
vector_function_number=, #设置矢量数据数量
) #读入Plot3D数据
plot3d.update() #让plot3D计算器输出数据
return plot3d plot3d = read_data()
grid = plot3d.output.get_block() #获取读入的数据集对象 #对数据集中的数据进行随机选取,每50个点选择一个点,是对数据进行降采样
mask = tvtk.MaskPoints(random_mode=True,on_ratio=)
mask.set_input_data(grid) #将grid和mask相连
#创建表示箭头的PolyData数据集
glyph_source = tvtk.ArrowSource()
#在Mask采样后的PolyData数据集每个点上放置一个箭头
#箭头的方向(速度方向),长度<箭头越大,表示标量越大>和颜色<也表示标量大小,红色小,蓝色大>(两个都表示密度)由于点对应的矢量和标量数据决定

#将上面的降采样数据与箭头符号化相关联
glyph = tvtk.Glyph3D(input_connection=mask.output_port,
scale_factor=) #scale_factor符号的共同放缩系数
glyph.set_source_connection(glyph_source.output_port) m = tvtk.PolyDataMapper(scalar_range=grid.point_data.scalars.range, #设置映射器的变量范围属性
input_connection=glyph.output_port)
a = tvtk.Actor(mapper=m)
a.property.opacity = 0.5 #设置透明度为0. win = ivtk_scene(a)
win.scene.isometric_view()
event_loop()

总结矢量化数据可视化的三个方法

(1)Glyph3D是TVTK的符号化技术

降采样的数据会被传入作为他的数据源,他输入数据的每个点,都会拷贝一个符号,符号本身是通过ArrowSource创建,由set_source_connection关联ployData和箭头

(2)MaskPoints降采样,可输出降采样前后点的数目查看效果

降采样前

降采样后

(3)ArrowSource方法修改

创建了表示箭头的PolyData数据集
glyph_source = tvtk.ArrowSource()  
glyph_source = tvtk.ConeSource()
设置防缩系数:scale_factor =

(三)空间轮廓线可视化

from tvtk.api import tvtk
from tvtk.common import configure_input
from Tvtkfunc import ivtk_scene,event_loop def read_data(): #导入数据
plot3d = tvtk.MultiBlockPLOT3DReader(
xyz_file_name="comxyz.bin", #网格文件
q_file_name="combq.bin", #开启动力学结果文件
scalar_function_number = , #设置标量数据数量
vector_function_number=, #设置矢量数据数量
) #读入Plot3D数据
plot3d.update() #让plot3D计算器输出数据
return plot3d plot3d = read_data()
grid = plot3d.output.get_block() #获取读入的数据集对象 outline = tvtk.StructuredGridOutlineFilter() #计算表示外边框的PolyData对象
configure_input(outline,grid) #调用tvtk.common.configure_input(),将外框计算与数据集产生关联 m = tvtk.PolyDataMapper(input_connection=outline.output_port)
a = tvtk.Actor(mapper=m)
a.property.color = 0.3,0.3,0.3 #float色彩空间0-1.0 win = ivtk_scene(a)
win.scene.isometric_view()
event_loop()

思路扩展:

将空间轮廓可视化和标量数据可视化或者矢量数据可视化一起使用,形成更加完善的形状

科学计算三维可视化---TVTK库可视化实例的更多相关文章

  1. 科学计算三维可视化---Mlab基础(数据可视化)

    推文:科学计算三维可视化---TVTK库可视化实例 使用相关函数:科学计算三维可视化---Mlab基础(管线控制函数) 一:mlab.pipeline中标量数据可视化 通过持续实例,来感受mlab对数 ...

  2. 科学计算三维可视化---TVTK入门(安装与测试)

    推文:http://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html 推文:http://code.enthought.com/pages/mayav ...

  3. Python科学计算三维可视化(整理完结)

    中国MOOC<Pyhton计算计算三维可视化>总结 课程url:here ,教师:黄天宇,嵩天 下文的图片和问题,答案都是从eclipse和上完课后总结的,转载请声明. Python数据三 ...

  4. 科学计算三维可视化---Mlab基础(管线控制函数)

    科学计算三维可视化---TVTK管线与数据加载(可视化管线和图像管线了解) 科学计算三维可视化---Mayavi入门(Mayavi管线) Mlab管线控制函数的调用 Sources:数据源 Filte ...

  5. 科学计算三维可视化---Mlab基础(鼠标选取交互操作)

    一:鼠标选取介绍 二:选取红色小球分析 相关方法:科学计算三维可视化---Mlab基础(基于Numpy数组的绘图函数) 1.小球场景初始化建立 import numpy as np from maya ...

  6. 科学计算三维可视化---TVTK入门(数据加载)

    一:数据加载 大多数可视化应用的数据并非是在TVTK库中构建的,很多都是通过接口读取外部数据文件 (一)使用vtkSTLReader来读取外部文件 .stl 文件是在计算机图形应用系统中,用于表示三角 ...

  7. 科学计算三维可视化---Traits介绍

    简介 Traits是开源扩展库,Traits本身与科学计算可视化没有直接关联,但他其实TVTK,Mayavi,TraitsUI基础 安装: pip3 install traits--cp36-cp36 ...

  8. 科学计算三维可视化---TraitsUI的介绍

    TraitsUI的介绍 Python中存在Tkinter,wxPython,pyQt4等GUI图像界面编写库,这三类库要求程序员掌握众多的GUI API函数 对于科学计算的应用来说,我们希望可以快速的 ...

  9. Python可视化TVTK库初使用

    本周学习了初步的TVTK库的安装及使用方法,第一次通过tvtk.CubeSource方法建立了一个长方体对象.对TVTK的接触有了新的体会. 首先,在网上下载了以下五个库并按顺序通过pip指令在cmd ...

随机推荐

  1. Task 6.4 冲刺Two之站立会议9

    今天主要对昨天用户提出的意见加以改进,虽然有些不能轻易实现但是仍然查阅了很多资料.因为他目前可以实现实时通信的功能,而我们想要在这个基础上实现临时的视频聊天的功能,但是时间有点紧迫,所以还没有实现.

  2. Task 6.4 冲刺Two之站立会议4

    今天对主界面部分的代码进行了完善,因为主界面有对于用户账号的设置.包括头像修改.增删好友.进入聊天界面等功能,包含的内容很多.我主要是负责跟聊天界面的连接以及账号设置的部分:遇到的问题有,因为这部分依 ...

  3. flownet2.0 caffe anaconda2 编译安装

    1. 下载flownet2.0源码到指定目录 cd /home/zzq/saliency_models/deep_optical_flow git clone https://github.com/l ...

  4. 复杂PC问题——信号量与共享存储区

    #include <stdio.h> #include <unistd.h> #include <sys/ipc.h> #include <sys/sem.h ...

  5. 第一次spring冲刺第7天

    讨论成员:王俊凯.王逸辉.罗凯杰.马志磊 讨论问题:进行UI设计的详细讨论,虽然结果各有争议,但最终确定了较为简单的布局页面,并且开始收集精美页面的案例 冲刺尚未结束,同志还需努力,致力于最后.

  6. Teamwork(The third day of the team)

    在确定了第一个spring后我们就开始了各自的工作,不过由于大家都在专注于自己的工作并且由于近段时间的作业及各方面的事情都很多,没有来得及每天都更新一个博客,因此,我们现在把落下的博客都补上,很多事情 ...

  7. 【CSAPP笔记】2. 整型运算

    现在想补补推荐这本书的理由. Most books on systems-computer architecture, compilers, operating systems, and networ ...

  8. iOS- 如何使用Alcatraz来高效的管理Xcode-Plugin(Xcode插件)

    1.前言 相信各位iOS攻城师用的Xocde的快捷插件也不少,今天向大家分享一款能高效快捷的管理Xcode-Plugin的软件<Alcatraz>,自己亲自体验后,爱不释手.   (这里用 ...

  9. mongodb常用基本命令(根据工作需要,不断更新)

    推荐可视化工具:mongobooster   复制库     db.copyDatabase("ability_message","ability_message_cop ...

  10. 反Nim博弈

    原文地址:https://blog.csdn.net/xuejye/article/details/78975900 在尼姆博奕中取完最后一颗糖的人为赢家,而取到最后一颗糖为输家的就是反尼姆博奕.这道 ...