科学计算三维可视化---TVTK库可视化实例
一:TVTK库可视化实例


Plot3D文件知识:PLOT3D 数据格式
PLOT3D文件分为网格文件(XYZ 文件), 空气动力学结果文件 (Q 文件)和通用结果文件(函数文件 + 函数名称文件)。网格文件中可加入所谓的IBlank参数。
(一)标量数据可视化(等值面)

generate_values()创建等值面
from tvtk.api import tvtk
from Tvtkfunc import ivtk_scene,event_loop def read_data(): #导入数据
plot3d = tvtk.MultiBlockPLOT3DReader(
xyz_file_name="comxyz.bin", #网格文件
q_file_name="combq.bin", #开启动力学结果文件
scalar_function_number = , #设置标量数据数量
vector_function_number=, #设置矢量数据数量
) #读入Plot3D数据
plot3d.update() #让plot3D计算器输出数据
return plot3d plot3d = read_data()
grid = plot3d.output.get_block() #获取读入的数据集对象 con = tvtk.ContourFilter() #创建等值面对象
con.set_input_data(grid) #将网格与其绑定
con.generate_values(,grid.point_data.scalars.range) #指定轮廓数和数据范围 其中轮廓数越大,越丰富多彩 #映射颜色最小红色,最大蓝色 m = tvtk.PolyDataMapper(scalar_range=grid.point_data.scalars.range, #设置映射器的变量范围属性
input_connection=con.output_port)
a = tvtk.Actor(mapper=m)
a.property.opacity = 0.5 #设置透明度为0. win = ivtk_scene(a)
win.scene.isometric_view()
event_loop()

set_value设置每个等值面的值
第一个参数是指定第几个等值面,第二个参数是设置该等值面的值
set_value(,0.3)

(二)矢量数据可视化(有数值和方向)
箭头大小可以表示标量信息,箭头方向可以表示矢量的方向
为了能够在矢量数据网格中放置箭头符号,我们可以使用TVTK库中提供的Glyph3D符号化技术,可以产生放缩,着色,和具有方向的符号

在一般情况下,由于矢量数据过于密集,为了使得绘制速度更快,让箭头的密度适中,我们可以使用降维的方法,来降低数据的密度



from tvtk.api import tvtk
from Tvtkfunc import ivtk_scene,event_loop def read_data(): #导入数据
plot3d = tvtk.MultiBlockPLOT3DReader(
xyz_file_name="comxyz.bin", #网格文件
q_file_name="combq.bin", #开启动力学结果文件
scalar_function_number = , #设置标量数据数量
vector_function_number=, #设置矢量数据数量
) #读入Plot3D数据
plot3d.update() #让plot3D计算器输出数据
return plot3d plot3d = read_data()
grid = plot3d.output.get_block() #获取读入的数据集对象 #对数据集中的数据进行随机选取,每50个点选择一个点,是对数据进行降采样
mask = tvtk.MaskPoints(random_mode=True,on_ratio=)
mask.set_input_data(grid) #将grid和mask相连
#创建表示箭头的PolyData数据集
glyph_source = tvtk.ArrowSource()
#在Mask采样后的PolyData数据集每个点上放置一个箭头
#箭头的方向(速度方向),长度<箭头越大,表示标量越大>和颜色<也表示标量大小,红色小,蓝色大>(两个都表示密度)由于点对应的矢量和标量数据决定
#将上面的降采样数据与箭头符号化相关联
glyph = tvtk.Glyph3D(input_connection=mask.output_port,
scale_factor=) #scale_factor符号的共同放缩系数
glyph.set_source_connection(glyph_source.output_port) m = tvtk.PolyDataMapper(scalar_range=grid.point_data.scalars.range, #设置映射器的变量范围属性
input_connection=glyph.output_port)
a = tvtk.Actor(mapper=m)
a.property.opacity = 0.5 #设置透明度为0. win = ivtk_scene(a)
win.scene.isometric_view()
event_loop()

总结矢量化数据可视化的三个方法
(1)Glyph3D是TVTK的符号化技术
降采样的数据会被传入作为他的数据源,他输入数据的每个点,都会拷贝一个符号,符号本身是通过ArrowSource创建,由set_source_connection关联ployData和箭头
(2)MaskPoints降采样,可输出降采样前后点的数目查看效果
降采样前

降采样后

(3)ArrowSource方法修改
创建了表示箭头的PolyData数据集
glyph_source = tvtk.ArrowSource()
glyph_source = tvtk.ConeSource()
设置防缩系数:scale_factor =

(三)空间轮廓线可视化

from tvtk.api import tvtk
from tvtk.common import configure_input
from Tvtkfunc import ivtk_scene,event_loop def read_data(): #导入数据
plot3d = tvtk.MultiBlockPLOT3DReader(
xyz_file_name="comxyz.bin", #网格文件
q_file_name="combq.bin", #开启动力学结果文件
scalar_function_number = , #设置标量数据数量
vector_function_number=, #设置矢量数据数量
) #读入Plot3D数据
plot3d.update() #让plot3D计算器输出数据
return plot3d plot3d = read_data()
grid = plot3d.output.get_block() #获取读入的数据集对象 outline = tvtk.StructuredGridOutlineFilter() #计算表示外边框的PolyData对象
configure_input(outline,grid) #调用tvtk.common.configure_input(),将外框计算与数据集产生关联 m = tvtk.PolyDataMapper(input_connection=outline.output_port)
a = tvtk.Actor(mapper=m)
a.property.color = 0.3,0.3,0.3 #float色彩空间0-1.0 win = ivtk_scene(a)
win.scene.isometric_view()
event_loop()

思路扩展:
将空间轮廓可视化和标量数据可视化或者矢量数据可视化一起使用,形成更加完善的形状
科学计算三维可视化---TVTK库可视化实例的更多相关文章
- 科学计算三维可视化---Mlab基础(数据可视化)
推文:科学计算三维可视化---TVTK库可视化实例 使用相关函数:科学计算三维可视化---Mlab基础(管线控制函数) 一:mlab.pipeline中标量数据可视化 通过持续实例,来感受mlab对数 ...
- 科学计算三维可视化---TVTK入门(安装与测试)
推文:http://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html 推文:http://code.enthought.com/pages/mayav ...
- Python科学计算三维可视化(整理完结)
中国MOOC<Pyhton计算计算三维可视化>总结 课程url:here ,教师:黄天宇,嵩天 下文的图片和问题,答案都是从eclipse和上完课后总结的,转载请声明. Python数据三 ...
- 科学计算三维可视化---Mlab基础(管线控制函数)
科学计算三维可视化---TVTK管线与数据加载(可视化管线和图像管线了解) 科学计算三维可视化---Mayavi入门(Mayavi管线) Mlab管线控制函数的调用 Sources:数据源 Filte ...
- 科学计算三维可视化---Mlab基础(鼠标选取交互操作)
一:鼠标选取介绍 二:选取红色小球分析 相关方法:科学计算三维可视化---Mlab基础(基于Numpy数组的绘图函数) 1.小球场景初始化建立 import numpy as np from maya ...
- 科学计算三维可视化---TVTK入门(数据加载)
一:数据加载 大多数可视化应用的数据并非是在TVTK库中构建的,很多都是通过接口读取外部数据文件 (一)使用vtkSTLReader来读取外部文件 .stl 文件是在计算机图形应用系统中,用于表示三角 ...
- 科学计算三维可视化---Traits介绍
简介 Traits是开源扩展库,Traits本身与科学计算可视化没有直接关联,但他其实TVTK,Mayavi,TraitsUI基础 安装: pip3 install traits--cp36-cp36 ...
- 科学计算三维可视化---TraitsUI的介绍
TraitsUI的介绍 Python中存在Tkinter,wxPython,pyQt4等GUI图像界面编写库,这三类库要求程序员掌握众多的GUI API函数 对于科学计算的应用来说,我们希望可以快速的 ...
- Python可视化TVTK库初使用
本周学习了初步的TVTK库的安装及使用方法,第一次通过tvtk.CubeSource方法建立了一个长方体对象.对TVTK的接触有了新的体会. 首先,在网上下载了以下五个库并按顺序通过pip指令在cmd ...
随机推荐
- web11 Struts处理表单数据
电影网站:www.aikan66.com 项目网站:www.aikan66.com游戏网站:www.aikan66.com图片网站:www.aikan66.com书籍网站:www.aikan66.co ...
- hive-2.3.3安装
1.下载hive-2.3.3 下载地址 http://archive.apache.org/dist/hive/hive-2.3.3 解压,编辑/etc/profile添加HIVE_HOME,保存文件 ...
- 《TCP/IP 详解 卷1:协议》第 4 章:地址解析协议
链路层是经过单一链路通信的协议层. IP 网络层协议的设计目标是为跨越不同物理类型的.多节点网络的 packet ,提供主机寻址.路由操作. 在其中要注意的一点是:网络层使用的地址和底层网络硬件使用的 ...
- Internet History, Technology and Security (Week 3)
Week 3 History: The Web Makes it Easy to Use Welcome to week 3! This is our fourth and final week of ...
- webservice(一) 概念
Web service:是一个平台独立的,低耦合的,自包含的.基于可编程的web的应用程序,可使用开放的XML(标准通用标记语言下的一个子集)标准来描述.发布.发现.协调和配置这些应用程序,用于开发分 ...
- Android UI测量、布局、绘制过程探究
在上一篇博客<Android中Activity启动过程探究>中,已经从ActivityThread.main()开始,一路摸索到ViewRootImpl.performTraversals ...
- poj 3311(状态压缩DP)
poj 3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...
- MacOS & .DS_Store
MacOS & .DS_Store .DS_Store === Desktop Services Store https://en.wikipedia.org/wiki/.DS_Store h ...
- Html5 web 本地存储 (localStorage、sessionStorage)
HTML5 提供了两种在客户端存储数据的新方法localStorage,sessionStorage sessionStorage(临时存储) :为每一个数据源维持一个存储区域,在浏览器打开期间存在, ...
- HDU4745——Two Rabbits——2013 ACM/ICPC Asia Regional Hangzhou Online
这个题目虽然在比赛的时候苦思无果,但是赛后再做就真的是个水题,赤果果的水题. 题目的意思是给n个数构成的环,两只兔子从任一点开始分别顺逆时针跳,每次可以调到任意一个数(最多不会跳过一圈). 求最多能跳 ...