科学计算三维可视化---TVTK库可视化实例
一:TVTK库可视化实例


Plot3D文件知识:PLOT3D 数据格式
PLOT3D文件分为网格文件(XYZ 文件), 空气动力学结果文件 (Q 文件)和通用结果文件(函数文件 + 函数名称文件)。网格文件中可加入所谓的IBlank参数。
(一)标量数据可视化(等值面)

generate_values()创建等值面
from tvtk.api import tvtk
from Tvtkfunc import ivtk_scene,event_loop def read_data(): #导入数据
plot3d = tvtk.MultiBlockPLOT3DReader(
xyz_file_name="comxyz.bin", #网格文件
q_file_name="combq.bin", #开启动力学结果文件
scalar_function_number = , #设置标量数据数量
vector_function_number=, #设置矢量数据数量
) #读入Plot3D数据
plot3d.update() #让plot3D计算器输出数据
return plot3d plot3d = read_data()
grid = plot3d.output.get_block() #获取读入的数据集对象 con = tvtk.ContourFilter() #创建等值面对象
con.set_input_data(grid) #将网格与其绑定
con.generate_values(,grid.point_data.scalars.range) #指定轮廓数和数据范围 其中轮廓数越大,越丰富多彩 #映射颜色最小红色,最大蓝色 m = tvtk.PolyDataMapper(scalar_range=grid.point_data.scalars.range, #设置映射器的变量范围属性
input_connection=con.output_port)
a = tvtk.Actor(mapper=m)
a.property.opacity = 0.5 #设置透明度为0. win = ivtk_scene(a)
win.scene.isometric_view()
event_loop()

set_value设置每个等值面的值
第一个参数是指定第几个等值面,第二个参数是设置该等值面的值
set_value(,0.3)

(二)矢量数据可视化(有数值和方向)
箭头大小可以表示标量信息,箭头方向可以表示矢量的方向
为了能够在矢量数据网格中放置箭头符号,我们可以使用TVTK库中提供的Glyph3D符号化技术,可以产生放缩,着色,和具有方向的符号

在一般情况下,由于矢量数据过于密集,为了使得绘制速度更快,让箭头的密度适中,我们可以使用降维的方法,来降低数据的密度



from tvtk.api import tvtk
from Tvtkfunc import ivtk_scene,event_loop def read_data(): #导入数据
plot3d = tvtk.MultiBlockPLOT3DReader(
xyz_file_name="comxyz.bin", #网格文件
q_file_name="combq.bin", #开启动力学结果文件
scalar_function_number = , #设置标量数据数量
vector_function_number=, #设置矢量数据数量
) #读入Plot3D数据
plot3d.update() #让plot3D计算器输出数据
return plot3d plot3d = read_data()
grid = plot3d.output.get_block() #获取读入的数据集对象 #对数据集中的数据进行随机选取,每50个点选择一个点,是对数据进行降采样
mask = tvtk.MaskPoints(random_mode=True,on_ratio=)
mask.set_input_data(grid) #将grid和mask相连
#创建表示箭头的PolyData数据集
glyph_source = tvtk.ArrowSource()
#在Mask采样后的PolyData数据集每个点上放置一个箭头
#箭头的方向(速度方向),长度<箭头越大,表示标量越大>和颜色<也表示标量大小,红色小,蓝色大>(两个都表示密度)由于点对应的矢量和标量数据决定
#将上面的降采样数据与箭头符号化相关联
glyph = tvtk.Glyph3D(input_connection=mask.output_port,
scale_factor=) #scale_factor符号的共同放缩系数
glyph.set_source_connection(glyph_source.output_port) m = tvtk.PolyDataMapper(scalar_range=grid.point_data.scalars.range, #设置映射器的变量范围属性
input_connection=glyph.output_port)
a = tvtk.Actor(mapper=m)
a.property.opacity = 0.5 #设置透明度为0. win = ivtk_scene(a)
win.scene.isometric_view()
event_loop()

总结矢量化数据可视化的三个方法
(1)Glyph3D是TVTK的符号化技术
降采样的数据会被传入作为他的数据源,他输入数据的每个点,都会拷贝一个符号,符号本身是通过ArrowSource创建,由set_source_connection关联ployData和箭头
(2)MaskPoints降采样,可输出降采样前后点的数目查看效果
降采样前

降采样后

(3)ArrowSource方法修改
创建了表示箭头的PolyData数据集
glyph_source = tvtk.ArrowSource()
glyph_source = tvtk.ConeSource()
设置防缩系数:scale_factor =

(三)空间轮廓线可视化

from tvtk.api import tvtk
from tvtk.common import configure_input
from Tvtkfunc import ivtk_scene,event_loop def read_data(): #导入数据
plot3d = tvtk.MultiBlockPLOT3DReader(
xyz_file_name="comxyz.bin", #网格文件
q_file_name="combq.bin", #开启动力学结果文件
scalar_function_number = , #设置标量数据数量
vector_function_number=, #设置矢量数据数量
) #读入Plot3D数据
plot3d.update() #让plot3D计算器输出数据
return plot3d plot3d = read_data()
grid = plot3d.output.get_block() #获取读入的数据集对象 outline = tvtk.StructuredGridOutlineFilter() #计算表示外边框的PolyData对象
configure_input(outline,grid) #调用tvtk.common.configure_input(),将外框计算与数据集产生关联 m = tvtk.PolyDataMapper(input_connection=outline.output_port)
a = tvtk.Actor(mapper=m)
a.property.color = 0.3,0.3,0.3 #float色彩空间0-1.0 win = ivtk_scene(a)
win.scene.isometric_view()
event_loop()

思路扩展:
将空间轮廓可视化和标量数据可视化或者矢量数据可视化一起使用,形成更加完善的形状
科学计算三维可视化---TVTK库可视化实例的更多相关文章
- 科学计算三维可视化---Mlab基础(数据可视化)
推文:科学计算三维可视化---TVTK库可视化实例 使用相关函数:科学计算三维可视化---Mlab基础(管线控制函数) 一:mlab.pipeline中标量数据可视化 通过持续实例,来感受mlab对数 ...
- 科学计算三维可视化---TVTK入门(安装与测试)
推文:http://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html 推文:http://code.enthought.com/pages/mayav ...
- Python科学计算三维可视化(整理完结)
中国MOOC<Pyhton计算计算三维可视化>总结 课程url:here ,教师:黄天宇,嵩天 下文的图片和问题,答案都是从eclipse和上完课后总结的,转载请声明. Python数据三 ...
- 科学计算三维可视化---Mlab基础(管线控制函数)
科学计算三维可视化---TVTK管线与数据加载(可视化管线和图像管线了解) 科学计算三维可视化---Mayavi入门(Mayavi管线) Mlab管线控制函数的调用 Sources:数据源 Filte ...
- 科学计算三维可视化---Mlab基础(鼠标选取交互操作)
一:鼠标选取介绍 二:选取红色小球分析 相关方法:科学计算三维可视化---Mlab基础(基于Numpy数组的绘图函数) 1.小球场景初始化建立 import numpy as np from maya ...
- 科学计算三维可视化---TVTK入门(数据加载)
一:数据加载 大多数可视化应用的数据并非是在TVTK库中构建的,很多都是通过接口读取外部数据文件 (一)使用vtkSTLReader来读取外部文件 .stl 文件是在计算机图形应用系统中,用于表示三角 ...
- 科学计算三维可视化---Traits介绍
简介 Traits是开源扩展库,Traits本身与科学计算可视化没有直接关联,但他其实TVTK,Mayavi,TraitsUI基础 安装: pip3 install traits--cp36-cp36 ...
- 科学计算三维可视化---TraitsUI的介绍
TraitsUI的介绍 Python中存在Tkinter,wxPython,pyQt4等GUI图像界面编写库,这三类库要求程序员掌握众多的GUI API函数 对于科学计算的应用来说,我们希望可以快速的 ...
- Python可视化TVTK库初使用
本周学习了初步的TVTK库的安装及使用方法,第一次通过tvtk.CubeSource方法建立了一个长方体对象.对TVTK的接触有了新的体会. 首先,在网上下载了以下五个库并按顺序通过pip指令在cmd ...
随机推荐
- jsp九大内置对象之一request
request对象,目的是用来获取客户端的请求. 主要方法有: request.getMethod(); // 获取提交请求的方式 request.getPr ...
- java异常处理及自定义异常的使用
1. 异常介绍 异常机制可以提高程序的健壮性和容错性. Throwable:Throwable是java语言所有错误或异常的超类. 有两个子类Error和Exception. 1.1 编译期异常 编译 ...
- c# Parallel 并行运算 异步处理
var list = new List<string> { "https://www.baidu.com","https://associates.amazo ...
- 转 理解vuex -- vue的状态管理模式
转自:https://segmentfault.com/a/1190000012015742 vuex是什么? 先引用vuex官网的话: Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式 ...
- vue之Mutations 理解
commit:提交可以在组件中使用 this.$store.commit('xxx') 提交 mutation,或者使用 mapMutations 辅助函数将组件中的 methods 映射为 stor ...
- 微信小程序配置文件记录
最近公司要求,需要研究微信方面的问题,我有幸被选中了,一周时间,研究透做出个小程序来.我就从简单的开始了,记录一下,以后忘了,好来翻阅 app.json 配置文件 配置文件上写:是由哪些页面组成,配置 ...
- ubuntu下安装vsftpd及vsftpd配置文件不见的解决办法
利用命令 sudo apt-get install vsftpd //安装 进入etc文件可以找到 vsftpd.conf的配置文件 作为新手难免会弄错配置又不知道怎么办,那么可能会利用 sudo ...
- vSphere Client 连接ESXi 或者是vCenter 时虚拟机提示VMRC异常的解决办法
1. 自己的vSphere 连接vCenter 向管理虚拟机 结果发现总是有异常. 提示如图示 VMRC控制台的连接已经断开 2. 花了比较长的时间也没搞定. 后来百度发现 关闭一个进程 然后重新登录 ...
- Java 使用 Dbutils 工具类库 操作mysql
Dbutils 官网http://commons.apache.org/proper/commons-dbutils/ 结合我个人写的JDBCUtils 写的 Dbutils 的使用demo . JD ...
- HDU 2255 奔小康赚大钱 (KM算法 模板题)
奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...