传送门

dp好题。


设f[i][j]f[i][j]f[i][j]表示iii个数结尾是jjj且结尾两个数递增的方案数。

那么显然可以对称的定义出g[i][j]g[i][j]g[i][j]表示iii个数结尾是jjj且结尾两个数递减的方案数。

那么显然有f[i][j]=g[i][i−j+1]f[i][j]=g[i][i-j+1]f[i][j]=g[i][i−j+1](考虑把第一个序列中每个数k都变成i-k+1)

且Ans=∑i=1n(f[n][i]+g[n][i])=2∗∑i=1nf[n][i]Ans=\sum _{i=1} ^n(f[n][i]+g[n][i])=2*\sum _{i=1} ^nf[n][i]Ans=∑i=1n​(f[n][i]+g[n][i])=2∗∑i=1n​f[n][i]

由于f[i][j]=∑k=1j−1g[i−1][k]f[i][j]=\sum _{k=1} ^{j-1} g[i-1][k]f[i][j]=∑k=1j−1​g[i−1][k]

=>f[i][j]=∑k=1j−1f[i−1][i−1−k+1]f[i][j]=\sum _{k=1} ^{j-1} f[i-1][i-1-k+1]f[i][j]=∑k=1j−1​f[i−1][i−1−k+1]

=>f[i][j]=∑k=1j−1f[i−1][i−k]f[i][j]=\sum _{k=1} ^{j-1} f[i-1][i-k]f[i][j]=∑k=1j−1​f[i−1][i−k]

=>f[i][j]=∑k=i−j+1i−1f[i−1][k]f[i][j]=\sum _{k=i-j+1} ^{i-1} f[i-1][k]f[i][j]=∑k=i−j+1i−1​f[i−1][k]

=>f[i][j−1]=∑k=i−j+2i−1f[i−1][k]f[i][j-1]=\sum _{k=i-j+2} ^{i-1} f[i-1][k]f[i][j−1]=∑k=i−j+2i−1​f[i−1][k]

=>f[i][j]−f[i][j−1]=f[i−1][i−j+1]f[i][j]-f[i][j-1]=f[i-1][i-j+1]f[i][j]−f[i][j−1]=f[i−1][i−j+1]

=>f[i][j]=f[i][j−1]+f[i−1][]i−j+1f[i][j]=f[i][j-1]+f[i-1][]i-j+1f[i][j]=f[i][j−1]+f[i−1][]i−j+1

推导真妙啊。

注意要特判只有一个的情况。

以及要用滚动数组优化空间233

代码:

#include<bits/stdc++.h>
#define N 4205
using namespace std;
int f[2][N],p,n,ans=0,tmp=0;
int main(){
	scanf("%d%d",&n,&p);
	if(n==1)return cout<<1,0;
	f[tmp][1]=1;
	for(int i=2;i<=n;++i){
		tmp^=1;
		for(int j=1;j<=i;++j)f[tmp][j]=(f[tmp][j-1]+f[tmp^1][i-j+1])%p;
	}
	for(int i=1;i<=n;++i){
		ans+=f[tmp][i];
		if(ans>=p)ans-=p;
	}
	ans<<=1;
	if(ans>=p)ans-=p;
	cout<<ans;
	return 0;
}

2018.10.20 bzoj1925: [Sdoi2010]地精部落(dp)的更多相关文章

  1. [BZOJ1925][SDOI2010]地精部落(DP)

    题意 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N ...

  2. BZOJ 1925: [Sdoi2010]地精部落( dp )

    dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满 ...

  3. bzoj1925 [Sdoi2010] 地精部落【DP】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 一个多月前“过”了这道题,还自欺欺人地认为懂了这道题,这直接导致了昨晚多校联测2的T3 ...

  4. [bzoj1925][Sdoi2010]地精部落_递推_动态规划

    地精部落 bzoj-1925 Sdoi-2010 题目大意:给你一个数n和模数p,求1~n的排列中满足每一个数的旁边两个数,要么一个是边界,要么都比它大,要么都比它小(波浪排列个数) 注释:$1\le ...

  5. BZOJ1925 [Sdoi2010]地精部落 【dp】

    题目 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N ...

  6. BZOJ1925[SDOI2010]地精部落

    Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...

  7. 【czy系列赛】czy的后宫4 && bzoj1925 [Sdoi2010]地精部落

    [问题描述] czy有很多妹子,妹子虽然数量很多,但是质量不容乐观,她们的美丽值全部为负数(喜闻乐见). czy每天都要带N个妹子到机房,她们都有一个独一无二的美丽值,美丽值为-1到-N之间的整数.他 ...

  8. [bzoj1925][Sdoi2010][地精部落] (序列动态规划)

    Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...

  9. BZOJ1925 [Sdoi2010]地精部落 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1925 题意概括 给出n,n<=4200,问1~n这些数的排列中,有多少满足一下性质: 性质: ...

随机推荐

  1. spring_cxf_basic_sender

    jar applicationContent.xml <?xml version="1.0" encoding="UTF-8"?> <bean ...

  2. jackson的小知识

  3. jmeter随机函数

    有些接口的字段,入参须唯一. 高并发压测的时候,这个比较棘手,可以用多个随机函数组合 如:两个__RandomString中间,夹个__Random ${__RandomString(2,qwerty ...

  4. Mysql 表名大写 找不到表

    原来Linux下的MySQL默认是区分表名大小写的,通过如下设置,可以让MySQL不区分表名大小写:1.用root登录,修改 /etc/my.cnf:2.在[mysqld]节点下,加入一行: lowe ...

  5. mysql 5.7.10使用dbforget Studio 连接异常

    提示:The 'INFORMATION_SCHEMA.SESSION_VARIABLES' feature is disabled; see the documentation for 'show_c ...

  6. 前端-CSS-3-高级选择器

    高级选择器 总结: <!-- 总结: 基础选择器: 1.标签选择器 div 2.类选择器 .div1 3.id选择器 #box 4.通配符选择器 * 高级选择器: 1.群组选择器 中间用, .t ...

  7. ABAP-关于COMMIT WORK 和COMMIT WORK AND WAIT

    转载:https://blog.csdn.net/champaignwolf/article/details/6925019 首先说明一点:更新是异步的,更新是由SAP中UPD1和UPD2两个进程执行 ...

  8. node 的exports 和module

    文件05/** * Created by Mr.tiankong on 2017/3/24. */var People = require("./test/people.js"); ...

  9. Hibernate DetachedCriteria实现

     前段时间在做模糊查询,并利用数据库分页,DAO用hibernate实现,刚开始的时候 根据业务层的数据,拼hql语句进行查询,且不说要进行一些if判断,单从结构上来说, 底层的数据访问层依赖于业务层 ...

  10. HP LaserJet MFP M227_M231双面打印

    双面打印设置