LOJ #6089. 小 Y 的背包计数问题
LOJ #6089. 小 Y 的背包计数问题
神仙题啊orz。
首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分。
\(>\sqrt n\)的部分因为最多选\(\sqrt n\)个数,所以数量就没有卵用了。然后就用完全背包的一个常见套路(?)可以对一个空的序列整体+1或者在最左边加上一个\(\sqrt n+1\),这个操作序列和完全背包的选择方案一一对应。感性理解一下是对的emmmm,复杂度\(O(n\sqrt n)\)
\(<=\sqrt n\)的部分只有\(\sqrt n\)个数,就可以多重背包做,然后用剩余系优化。
剩余系就是说多重背包方案的转移方程是\(f[i][j]=\sum_{k=1}^{i}f[i-1][j-ki]\)这个样子的
可以发现转移过来的j都和原来的j同余\((\text{mod } i)\)
对于每一个\(\text{mod }i\)的余数做一个f的前缀和,转移过来的一定是连续的一段
orz
#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
#define mod 23333333
ll f[320][100010];
ll h[100010],s[100010];
int main(){
int n=gi(),m=int(sqrt(n));
f[0][0]=1;s[0]=1;
for(int i=1;i<=m;++i)
for(int j=0;j<=n;++j){
if(j>i)f[i][j]+=f[i][j-i];
if(j>m)f[i][j]+=f[i-1][j-m-1];
f[i][j]%=mod;
s[j]=(s[j]+f[i][j])%mod;
}
memset(f,0,sizeof f);f[0][0]=1;
for(int i=1;i<=m;++i){
for(int j=0;j<i;++j){
int t=0;
for(int k=j;k<=n;k+=i)h[++t]=f[i-1][k];
for(int k=2;k<=t;++k)h[k]=(h[k]+h[k-1])%mod;
for(int k=j,tot=0;k<=n;k+=i){
++tot;
f[i][k]=(f[i][k]+h[tot]-h[std::max(0,tot-i-1)]+mod)%mod;
}
}
}
ll ans=0;
for(int i=0;i<=n;++i)ans+=s[i]*f[m][n-i]%mod;
printf("%lld\n",ans%mod);
return 0;
}
LOJ #6089. 小 Y 的背包计数问题的更多相关文章
- loj 6089 小 Y 的背包计数问题——分类进行的背包
题目:https://loj.ac/problem/6089 直接多重背包,加上分剩余类的前缀和还是n^2的. 但可发现当体积>sqrt(n)时,个数的限制形同虚设,且最多有sqrt(n)个物品 ...
- LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP
题目:https://loj.ac/problem/6089 对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k ...
- LOJ#6089 小 Y 的背包计数问题 - DP精题
题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...
- 【LOJ6089】小Y的背包计数问题(动态规划)
[LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...
- [loj6089]小Y的背包计数问题
https://www.zybuluo.com/ysner/note/1285358 题面 小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品. 对于第\(i\)种物品,共有 ...
- loj6089 小 Y 的背包计数问题
link 吐槽: 好吧开学了果然忙得要死……不过为了证明我的blog还没有凉,还是跑来更一波水题 题意: 有n种物品,第i种体积为i,问装满一个大小为n的背包有多少种方案? $n\leq 10^5.$ ...
- LOJ6089 小Y的背包计数问题(根号优化背包)
Solutioon 这道题利用根号分治可以把复杂度降到n根号n级别. 我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制. 进一步我们发现,这个背包最多只能放根号n个物品. ...
- LOJ6089 小Y的背包计数问题 背包、根号分治
题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...
- LOJ6089 小Y的背包计数问题 背包
正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...
随机推荐
- VMware下 CentOS 连接外网问题(笔记)
虚拟机连接外网有三种模式.桥接.Nat.Host-Only.三者的区别,详见 实例讲解虚拟机3种网络模式(桥接.nat.Host-only) 使用虚拟机连接外网时,一定要充分考虑本地的网络环境!!! ...
- 汉诺塔问题php解决
面向过程解决 <?php function hanio($n,$x,$y,$z){//把n个盘子,按照要求从x移到z,y是中介 //递归跳出条件 if($n==1){ move($n, $x, ...
- selenium安装浏览器驱动
3.0以上版本恩的selenium需要安装驱动 pip show selenium 安装驱动 1.下载驱动地址: 火狐:https://github.com/mozilla/geckodriver/r ...
- struts返回json数据
想要在struts中返回json格式数据有两种办法. 1.使用servlet的输出流 实际上就是在struts中获取response对象的输出流.然后写入你要返回的json数据,本质和用servlet ...
- python第一课——关于python的一些概念
day01(上午): 1.学习方法(建议): 1).不要依赖于我的视频,绝对不要晚上将视频全部在过一遍 2).上课不要记笔记,而且不要用纸质的笔记本去整理笔记 3).不要只看不敲,代码方面我们需要做到 ...
- 【CF662C】Binary Table
题目 好吧,我连板子都不会了 有一个非常显然的做法就是\(O(2^nm)\)做法就是枚举每一行的状态,之后我们贪心去看看每一列是否需要翻转就好啦 显然这个做法非常垃圾过不去 首先我们发现每一列都不超过 ...
- [翻译]怎么写一个React组件库(一)
本文同步发布于知乎专栏 https://zhuanlan.zhihu.com/p/27401329,喜欢本文的就去知乎点个赞支持下吧- 引言 该系列文章将通过创建一个组件库来引导你学习如何构建自己的组 ...
- 使用sqoop过程
With Sqoop, you can import data from a relational database system or a mainframe(主机) into HDFS. The ...
- html手机网页自适应宽度
#在head之间加如下代码即可 <meta name="viewport" content="width=device-width, initial-scale=1 ...
- 703. Kth Largest Element in a Stream
题目来源: https://leetcode.com/problems/kth-largest-element-in-a-stream/ 自我感觉难度/真实难度: 题意: 这个题目的意思解读了半天,没 ...