洛咕 P2494 [SDOI2011]保密
出题人没素质啊,强行拼题还把题面写得又臭又长。
简单题面就是有一张图,每条边有两个权值\(t,s\),有无限支军队,一支军队可以打一个点,代价是从n到这个点的路径的\(\frac{\sum t}{\sum s}\)。
有m条限制,每条限制就是a,b两个点至少选一个,求最小代价。
首先第一部分也就是要求每个点的代价,显然分数规划,随便做做就没了。
第二部分就是裸的最小割,随便做做就没了。
#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
#define maxn 710
int n,m;
struct edge{int d,t,s;};
std::vector<edge>G[maxn];
double W[maxn],dist[maxn];int s[maxn],_s[maxn];
il vd SPFA(double Mid){
static bool inq[maxn];
static int que[maxn],hd,tl;
for(int i=1;i<=n;++i)dist[i]=1e9;
hd=tl=0;que[tl++]=n;dist[n]=0;
while(hd^tl){
int x=que[hd];
for(int i=0;i<G[x].size();++i)
if(dist[G[x][i].d]>dist[x]+G[x][i].t-Mid*G[x][i].s){
dist[G[x][i].d]=dist[x]+G[x][i].t-Mid*G[x][i].s;
if(!inq[G[x][i].d])inq[G[x][i].d]=1,que[tl++]=G[x][i].d,tl%=maxn;
}
inq[x]=0;++hd;hd%=maxn;
}
}
il vd solve(int l,int r,double L,double R){
if(R-L<1e-3){
L=(L+R)*0.5;
for(int i=l;i<=r;++i)W[s[i]]=L;
return;
}
if(l>r)return;
double Mid=(L+R)*0.5;
SPFA(Mid);
int _l=l-1,_r=r+1;
for(int i=l;i<=r;++i)
if(dist[s[i]]<0)_s[++_l]=s[i];
else _s[--_r]=s[i];
memcpy(s+l,_s+l,4*(r-l+1));
solve(l,_l,L,Mid);
solve(_r,r,Mid,R);
}
#define maxm 100000
int fir[maxn],head[maxn],dep[maxn],dis[maxm],nxt[maxm],id=1,S=maxn-1,T=maxn-2;double w[maxm];
il vd link(int a,int b,double c){
nxt[++id]=fir[a],fir[a]=id,dis[id]=b,w[id]=c;
nxt[++id]=fir[b],fir[b]=id,dis[id]=a,w[id]=0;
}
il bool BFS(){
static int que[maxn],hd,tl;
hd=tl=0;que[tl++]=S;
memset(dep,0,sizeof dep);dep[S]=1;
while(hd^tl){
int x=que[hd++];
for(int i=fir[x];i;i=nxt[i])
if(w[i]>1e-5&&!dep[dis[i]])
dep[dis[i]]=dep[x]+1,que[tl++]=dis[i];
}
return dep[T];
}
il double Dinic(int x,double maxflow){
if(x==T)return maxflow;
double ret=0;
for(int i=fir[x];i;i=nxt[i])
if(w[i]>1e-5&&dep[dis[i]]==dep[x]+1){
double d=Dinic(dis[i],std::min(w[i],maxflow-ret));
w[i]-=d,w[i^1]+=d,ret+=d;
if(maxflow-ret<1e-6)break;
}
return ret;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("2494.in","r",stdin);
freopen("2494.out","w",stdout);
#endif
n=gi(),m=gi();
int a,b,_t,_s;
while(m--)a=gi(),b=gi(),_t=gi(),_s=gi(),G[a].push_back((edge){b,_t,_s});
for(int i=1;i<n;++i)s[i]=i;
solve(1,n-1,0,7777);
for(int i=1;i<=n;++i)if(W[i]>7776)W[i]=1e9;
int m1=gi(),n1=gi();
for(int i=1;i<=n1;i+=2)link(S,i,W[i]);
for(int i=2;i<=n1;i+=2)link(i,T,W[i]);
while(m1--)a=gi(),b=gi(),link(a,b,1e9);
double ans=0;while(BFS())memcpy(head,fir,sizeof fir),ans+=Dinic(S,1e9);
if(ans>9e8)puts("-1");
else printf("%.1lf\n",ans);
return 0;
}
洛咕 P2494 [SDOI2011]保密的更多相关文章
- 洛谷2494 [SDOI2011]保密 (分数规划+最小割)
自闭一早上 分数规划竟然还能被卡精度 首先假设我们已经知道了到每个出入口的时间(代价) 那我们应该怎么算最小的和呢? 一个比较巧妙的想法是,由于题目规定的是二分图. 我们不妨通过最小割的形式. 表示这 ...
- 【BZOJ2285】[SDOI2011]保密(分数规划,网络流)
[BZOJ2285][SDOI2011]保密(分数规划,网络流) 题面 BZOJ 洛谷 题解 首先先读懂题目到底在干什么. 发现要求的是一个比值的最小值,二分这个最小值\(k\),把边权转换成\(t- ...
- 洛咕3312 [SDOI2014]数表
洛咕3312 [SDOI2014]数表 终于独立写出一道题了...真tm开心(还是先写完题解在写的) 先无视a的限制,设\(f[i]\)表示i的约数之和 不妨设\(n<m\) \(Ans=\su ...
- 洛咕 P3700 [CQOI2017]小Q的表格
洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...
- 洛咕 P2336 [SCOI2012]喵星球上的点名
洛咕 P2336 [SCOI2012]喵星球上的点名 先求出SA和height,一个点名串对应的就是一段区间,还有很多个点,就转化成了 有很多个区间,很多个点集,对每个区间计算和多少个点集有交,对每个 ...
- 洛咕 P4131 [WC2005]友好的生物
洛咕 P4131 [WC2005]友好的生物 首先可以发现\(C\)是没有用的,可以乘进所有的权值里面做 考虑没有最后一维的限制,那么两个生物的友好值就是 \(\sum_{i=1}^k|a_i-b_i ...
- 洛咕 P4528 [CTSC2008]图腾
洛咕 P4528 [CTSC2008]图腾 神题orz. 先约定abcd表示\(1\leq A<B<C<D\leq n\),而且\(y_a,y_b,y_c,y_d\)的排名正好是\( ...
- 洛咕P3250 [HNOI2016]网络 整体二分
这题太神仙了必须写博客... 显然可以想到二分答案.二分一个答案mid,如果所有长度\(\geq mid\)的路径都过x,那么答案一定\(<mid\),否则答案\(\geq mid\). 那么就 ...
- 洛咕 P2480 [SDOI2010]古代猪文
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...
随机推荐
- 使用AKLocationManager定位
使用AKLocationManager定位 https://github.com/ideaismobile/AKLocationManager 以下是使用情况: 是不是很简单呢,我们可以将它的步骤进一 ...
- PowerShell管理SCOM_批量设置维护模式(上 )
#定义存储需要置为维护模式的计算机名称列表 $serverlist = "C:\scomm\servers.txt" #定义脚本执行结果的输出位置 $server_maintena ...
- python操作Exchange邮箱实例(-)
需求很简单,就是实现按公司域名及服务器模拟exchange发送邮件,主要是协助自动化测试.主要功能:收件人/抄送/正文html/附件 本实例基于:python2.7.11 exchangelib1.1 ...
- Linux 系统的网络配置文件
系统的网络配置文件 方式一: 界面操作 setup -->界面配置网络,网关等 方式二: 修改配置文件 # 修改配置 vim /etc/sysconfig/network-scripts/ifc ...
- Ubuntu Linux 14.04 LTS 上安装php7+mysql+nginx
输入 $ sudo apt-get install -y language-pack-en-base$ sudo LC_ALL=en_US.UTF-8 add-apt-repository ppa:o ...
- Spring Security自定义GrantedAuthority前缀
如果我们正使用Spring Security提供默认的基于方法的权限认证注解如下: @PreAuthorize("hasAnyRole('ADMIN', 'USER')") pub ...
- 绕过CDN查找网站真实IP方法收集
方法1很简单,使用各种多地 ping 的服务,查看对应 IP 地址是否唯一,如果不唯一多半是使用了CDN, 多地 Ping 网站有: http://ping.chinaz.com/ http://pi ...
- Django之Model (ORM)
传统操作数据库 到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这么搞: 创建数据库,设计表结构和字段 使用 MySQLdb 来连接数据库,并编写数据访问层代码 业务逻辑层去调用数据访问层 ...
- A NB群友 【记忆化搜索】(2019年华南理工大学程序设计竞赛(春季赛))
冲鸭!去刷题:https://ac.nowcoder.com/acm/contest/625/A 题目描述 CC是著名的算法竞赛选手,他不仅人长得帅,而且技术了得,自然而然就有了许多粉丝. 为了能帮助 ...
- 【转】HBase架构解析
转载地址:http://www.blogjava.net/DLevin/archive/2015/08/22/426877.html HBase架构组成 HBase采用Master/Slave架构搭建 ...