取石子游戏

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2872    Accepted Submission(s): 1420

Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
 
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
 
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
 
Sample Input
2 1
8 4
4 7
 
Sample Output
0
1
0

只是我第一道博弈题,这个是威佐夫博弈

所谓威佐夫博弈,是ACM题中常见的组合游戏中的一种,大致上是这样的:
有两堆石子,不妨先认为一堆有 10,另一堆有 15 个,双方轮流取走一些石子,合法的取法有如下两种:
1、在一堆石子中取走任意多颗;
2、在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必胜策略。

两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态,并画在平面直角坐标系上。

和前面类似,(0,0)肯定是 P 态,又叫必败态。(0,k),(k,0),(k,k)系列的节点肯定不是 P 态,而是必胜态,你面对这样的局面一定会胜,只要按照规则取一次就可以了。再看 y = x 上方未被划去的格点,(1,2)是 P 态。k > 2 时,(1,k)不是 P 态,比如你要是面对(1,3)的局面,你是有可能赢的。同理,(k,2),(1 + k, 2 + k)也不是 P 态,划去这些点以及它们的对称点,然后再找出 y = x 上方剩余的点,你会发现(3,5)是一个 P 态,如此下去,如果我们只找出 a ≤ b 的 P 态,则它们是(0,0),(1,2),(3,5),(4,7),(6,10)……它们有什么规律吗?

忽略(0,0),很快会发现对于第 i 个 P 态的 a,a = i * (sqrt(5) + 1)/2 然后取整;而 b = a + i。居然和黄金分割点扯上了关系。
前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。
判断一个点是不是必败点的公式与黄金分割有关(我无法给出严格的数学证明,谁能给出严格的数学证明记得告诉我),为:
m(k) = k * (1 + sqrt(5))/2
n(k) = m(k) + k;

#include<iostream>//用G++交,
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; int main()
{
int n,m,k,t;
while(scanf("%d%d",&n,&m )==)
{
if(n<m)//交换n,m的值。使n>m ;
{
n^=m;
m^=n;
n^=m;
}
k=n-m;
t=k*(+sqrt( ))/;
if(t==m)
printf("0\n");
else
printf("1\n");
}
return ;
}

取石子游戏(hdu1527 博弈)的更多相关文章

  1. HDU 2516 取石子游戏(FIB博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  2. 取石子游戏 BZOJ1874 博弈

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子, 每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略, ...

  3. 【BZOJ1413】取石子游戏(博弈,区间DP)

    题意:在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中 ...

  4. hdu 2516 取石子游戏 (Fibonacci博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  5. hdu1527取石子游戏(威佐夫博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  6. hdu1527取石子游戏---(威佐夫博弈)

    感谢 http://www.cnblogs.com/yuyixingkong/p/3362476.html 取石子游戏 Time Limit: 2000/1000 MS (Java/Others)   ...

  7. 【洛谷2252&HDU1527】取石子游戏(博弈论)

    题面 HDU1527 取石子游戏 洛谷2252 取石子游戏 题解 裸的威佐夫博弈 #include<iostream> #include<cmath> using namesp ...

  8. HDU 2516 取石子游戏(斐波那契博弈)

    取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...

  9. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

随机推荐

  1. 探究Entity Framework如何在多个仓储层实例之间工作单元的实现及原理(2018-05-31修改部分严重错误代码)

    前言 1.本文的前提条件:EF上下文是线程唯一,EF版本6.1.3. 2.网上已有相关API的详细介绍,本文更多的是作为我自己的个人学习研究记录. 3.2018-05-31修改DbSession.cs ...

  2. [初识]使用百度AI接口,图灵机器人实现简单语音对话

    一.准备 1.百度ai开放平台提供了优质的接口资源https://ai.baidu.com/  (基本免费) 2.在语音识别的接口中, 对中文来说, 讯飞的接口是很好的选择https://www.xf ...

  3. mysql5.7 安装错误解决

    1.5.7初始化报错 2019-04-29 21:40:34 [ERROR] Child process: /home/work/mysql/bin/mysqldterminated prematur ...

  4. Python 模块之wxpython 的应用

    第一个应用程序:“Hello World” 作为传统,我们首先将要写一个小的“Hello World”程序,下面是他的代码: #!/usr/bin/env python import wx app = ...

  5. [JSOI2018]列队(主席树)

    跟上次那道列队不一样,但都是九条可怜...(吉老师太强了) 在主席树上统计答案,因为值域只有 \(10^6\) 甚至不用离散化... \(Code\ Below:\) #include <bit ...

  6. sync.WaitGroup和sync.Once

    sync.WaitGroup,顾名思义,等待一组goroutinue运行完毕.sync.WaitGroup声明后即可使用,它有如下方法: func (wg *WaitGroup) Add(delta ...

  7. c++之window.h

    在c++中引入window.h头文件. Sleep函数,此函数接受一个时间参数,单位是ms.即使得程序在一段时间后继续运行.如下: 在hello输出之后3000ms,才会继续输出world字符串. M ...

  8. PHP使用APC获取上传文件进度

    今天发现使用PHP的APC也能获取上传文件的进度.这篇文章就说下如何做. 安装APC 首先安装APC的方法和其他PHP模块的方法没什么两样,网上能找出好多 phpinfo可以看到APC的默认配置有: ...

  9. 再谈C#委托与事件

    之前写过一篇关于C#委托与事件的文章(见<C#委托和事件例析>),不过还是收到一些网友的提问.所以,今天再换另一个角度来详解一下这个问题. 一.在控制台下使用委托和事件 我们都知道,C#中 ...

  10. mysql基础知识(2)

    十 一.计算字段 计算字段通常需要使用 AS 来取别名,否则输出的时候字段名为计算表达式 select col1*col2 as col12 from mytable concat() 用于连接两个字 ...