LINK:Lis-The Postman

看完题觉得 虽然容易发现是有向图欧拉回路 但是觉得很难解决这个问题。

先分析一下有向图的欧拉回路:充要条件 图中每个点的入度-出度=0且整张图是一个强连通分量。

证明:首先考虑前者 这个思想是 从一个点出去必然还能回来所以可以形成回路 后者保证了图是联通的。

但是注意观察题目中有一些比较好的条件 每两个点之间的边最多有两条且方向不同。

题目给了k条必须要要连续走的路径 容易想到多条路径可以合并在一起。

这个操作看起来难做 但是 把边进行标号 然后只需要前驱和后继进行合并即可。

判定条件:1 图中原本的点入度-出度=0.2 一条边在一条路径出现两次就是错的 3 一条边有多个前驱后继就是错的。

这样 我们可以把一些边给合并起来了。我们可以要求一走走完这些边。

4 这些边合并在一起后 存在环了那么肯定也走不了。

剩下的就是一个正常的图了 跑欧拉回路即可。

5 在新建的图中再次判断点的出度和入度。

6 最后需要判断图联通与否。

7 判断是否可以从1出发

8 虽然没要求输出方案但是这里点一下 倒序输出点 点和点相连就是边了 更快的方法 输出点的时候可以直接记录将这个点送进来的边是哪个直接输出边。

//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define S second
#define F first
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define ull unsigned long long
#define ui unsigned
#define EPS 1e-8
#define mod 1000000007
#define sq sqrt
#define l(p) t[p].l
#define r(p) t[p].r
#define op(p) t[p].op
#define cnt(p) t[p].cnt
#define sum(p) t[p].sum
#define zz p<<1
#define yy p<<1|1
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=200010,maxn=50010;
int n,m,len,k,top;
int du[MAXN],w[MAXN],b[MAXN],s[MAXN];
map<int,int>H[maxn];
struct wy{int x,y;}t[MAXN];
int pre[MAXN],ne[MAXN],vis[MAXN];
int lin[MAXN],ver[MAXN],nex[MAXN],fir[MAXN];
inline void add(int x,int y,int w1)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
++du[x];--du[y];
fir[len]=w1;
//cout<<x<<' '<<y<<endl;
}
inline void js(){puts("NIE");exit(0);}
inline void dfs(int x,int fa)
{
for(int &i=lin[x];i;i=nex[i])
{
if(vis[i])continue;
vis[i]=1;
dfs(ver[i],i);
}
s[++top]=fa;
//put(x);
}
int main()
{
//freopen("1.in","r",stdin);
//freopen("1.out","w",stdout);
get(n);get(m);
rep(1,m,i)
{
int get(x),get(y);
t[i]=(wy){x,y};
++du[x];--du[y];
H[x][y]=i;
}
rep(1,n,i)if(du[i])js();
get(k);
rep(1,k,i)
{
int get(x);
int get(las);
rep(1,x-1,j)
{
int get(y);
if(H[las].find(y)==H[las].end())js();
b[j]=H[las][y];
if(w[b[j]]==i)js();
las=y;
}
rep(1,x-2,j)
{
if(!pre[b[j+1]])pre[b[j+1]]=b[j];
else if(pre[b[j+1]]!=b[j])js();
if(!ne[b[j]])ne[b[j]]=b[j+1];
else if(ne[b[j]]!=b[j+1])js();
}
}
int cnt=0;
rep(1,m,i)
if(!pre[i])
{
int j;++cnt;
for(j=i;ne[j];j=ne[j])++cnt;
add(t[i].x,t[j].y,i);
}
if(cnt<m||!lin[1])js();
rep(1,n,i)if(du[i])js();
dfs(1,0);--top;
rep(1,n,i)if(lin[i])js();
puts("TAK");
/*put(t[fir[s[top]]].x);
fep(top,1,i)
{
int j=fir[s[i]];
//put(t[j].x);
do
{
put(t[j].y);
j=ne[j];
}while(j);
}*/
return 0;
}

bzoj 1515 [POI2006]Lis-The Postman 有向图欧拉回路的更多相关文章

  1. 有向图欧拉回路个数 BEST定理

    有向图欧拉回路个数 BZOJ 3659 但是没有这道题了  直接贴一个别人的板子吧 欧拉回路:存在一条路径经过所有的边刚好1次 有向图欧拉回路存在充要条件:①图连通:②对于所有点都满足出度=入度 BE ...

  2. BZOJ.3532.[SDOI2014]LIS(最小割ISAP 退流)

    BZOJ 洛谷 \(LIS\)..经典模型? 令\(f_i\)表示以\(i\)结尾的\(LIS\)长度. 如果\(f_i=1\),连边\((S,i,INF)\):如果\(f_i=\max\limits ...

  3. 模拟 - BZOJ 1510 [POI2006] Kra-The Disks

    BZOJ 1510 [POI2006] Kra-The Disks 描述 Johnny 在生日时收到了一件特殊的礼物,这件礼物由一个奇形怪状的管子和一些盘子组成. 这个管子是由许多不同直径的圆筒(直径 ...

  4. poj 1386 Play on Words(有向图欧拉回路)

    /* 题意:单词拼接,前一个单词的末尾字母和后一个单词的开头字母相同 思路:将一个单词的开头和末尾单词分别做两个点并建一条有向边!然后判断是否存在欧拉回路或者欧拉路 再次强调有向图欧拉路或欧拉回路的判 ...

  5. POJ 2230 Watchcow(有向图欧拉回路)

    Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the ...

  6. bzoj 1513 [POI2006]Tet-Tetris 3D(二维线段树)

    1513: [POI2006]Tet-Tetris 3D Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 540  Solved: 175[Submit ...

  7. LOJ-10106(有向图欧拉回路的判断)

    题目链接:传送门 思路: (1)将每个单词视为有向路径,单词的起始字母是起始节点,末尾字母是终止节点,然后找由字母建立的有向图 是否是欧拉图或者半欧拉图. (2)先用并查集判断是否连通,再判断入度与出 ...

  8. bzoj 1513 POI2006 Tet-Tetris 3D 二维线段树+标记永久化

    1511: [POI2006]OKR-Periods of Words Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 351  Solved: 220[S ...

  9. bzoj 1510 [POI2006]Kra-The Disks 二分

    1510: [POI2006]Kra-The Disks Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 466  Solved: 272[Submit][ ...

随机推荐

  1. html/css解决inline-block内联元素间隙的多种方法总汇

    序 display有几种属性:inline是内联对象,比如<a/> . <span/>标签等,可以“堆在一起”显示,宽高由内容决定,不能设置:block是块对象,比如<d ...

  2. 小程序被冻结,忘记原始ID,如何找回?

     登录成功,提示被冻结,选择"账号找回": 阅读须知:账号类型选择“小程序”,需要输入小程序的原始ID,此时已经不记得了~~ 微信:搜索 “ 公众平台安全助手 ” 并关注  点击查 ...

  3. (一)ELK 部署

    官网地址:https://www.elastic.co/cn/ ELK是Elasticsearch.Logstash.Kibana的简称,这三者是核心套件,但并非全部.   Elasticsearch ...

  4. C++输出三角图形

    输出像这样的三角图形 3            1           1 1          1    1         1 1 1 1        1          1       1 ...

  5. Re5ilio 5ync:资源神器

    文章目录 #0x0 简单的介绍 #0x1 安装使用 #0x10 下载 #0x11 安装 #0x12 升级pro权限 #0x13 开始添加资源 #0x14 后续 一定要小心哦!! #0x0 简单的介绍 ...

  6. 关于echarts中的饼状图的label文字显示过长的问题

    label: { normal: { fontSize: 14, formatter(v) { let text = v.name let count = text.indexOf('¥') cons ...

  7. HDFS客户端环境准备

    一.下载Hadoop jar包至非中文路径 下载链接:https://hadoop.apache.org/releases.html 解压至非中文路径 二.配置Hadoop环境变量 配置HADOOP_ ...

  8. 数据可视化之powerBI技巧(十四)采悟:PowerBI中自制中文单位万和亿

    使用PowerBI的时候,一个很不爽之处就是数据单位的设置,只能用千.百万等英美的习惯来显示,而没有我们中文所习惯的万亿等单位,虽然要求添加"万"的呼声很高,但迟迟未见到改进动作, ...

  9. PHP 反序列化漏洞入门学习笔记

    参考文章: PHP反序列化漏洞入门 easy_serialize_php wp 实战经验丨PHP反序列化漏洞总结 PHP Session 序列化及反序列化处理器设置使用不当带来的安全隐患 利用 pha ...

  10. 当输入一个 URL,实际会发生什么?

    从一个经典的面试题说起 从输入URL到页面展现的过程: 输入URL后,会先进行域名解析.优先查找本地host文件有无对应的IP地址,没有的话去本地DNS服务器查找,还不行的话,本地DNS服务器会去找根 ...