ABC 158 F - Removing Robots dp 单调栈
LINK:Removing Robots
没想到 自闭。
考虑了一个容斥 发现不合法方案难以计算。
就算可以计算也几乎是n^2的做法。
考虑dp 左边会对右边产生影响 所以考虑先dp右边的再考虑左边的。
至于dp 自然是f[i]表示这个i~n这么多点的方案数。
设 i向右第一个影响不到的点为w 那么 有转移 f[i]+=f[i+1]+f[w].
这样从左到右dp就可以算出所有的方案了。
const ll MAXN=200010;
ll n,ans,top;
ll f[MAXN],g[MAXN],s[MAXN];
struct wy
{
ll x,y;
inline ll friend operator <(wy a,wy b){return a.x<b.x;}
}t[MAXN];
int main()
{
freopen("1.in","r",stdin);
get(n);
rep(1,n,i)
{
ll get(x);ll get(y);
t[i]=(wy){x,x+y-1};
}
sort(t+1,t+1+n);
g[n+1]=1;
fep(n,1,i)
{
f[i]=i;
while(top&&t[i].y>=t[s[top]].x)
{
f[i]=max(f[i],f[s[top]]);
--top;
}
s[++top]=i;
g[i]=(g[i+1]+g[f[i]+1])%mod;
}
putl(g[1]);
return 0;
}
ABC 158 F - Removing Robots dp 单调栈的更多相关文章
- [luogu]P1169 [ZJOI2007]棋盘制作[DP][单调栈]
[luogu]P1169 [ZJOI]棋盘制作 ——!x^n+y^n=z^n 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋 ...
- poj 2796 Feel Good dp || 单调栈
题目链接 题意 对于一个长度为\(n\)的非负整数数列\(a_1,a_2,-,a_n\),求\(max_{1≤l≤r≤n}f(l,r)\), 其中 \[f(l,r)=min(a_l,a_{l+1},- ...
- bzoj 1233: [Usaco2009Open]干草堆tower【dp+单调栈】
参考:https://www.cnblogs.com/N-C-Derek/archive/2012/07/11/usaco_09_open_tower.html 虽然长得很像斜率优化,但是应该不算-- ...
- 【BZOJ】3039: 玉蟾宫(DP/单调栈)
http://www.lydsy.com/JudgeOnline/problem.php?id=3039 每次看到我的提交都有点淡淡的忧伤T_T.. 看到此题我想到用前缀和维护点ij向左和向上能拓展的 ...
- 【DP/单调栈】关于单调栈的一些题目(codevs 1159,codevs 2673)
CODEVS 2673:Special Judge 题目描述 Description 这个月的pku月赛某陈没有参加,因为当时学校在考试[某陈经常逃课,但某陈还没有强大到考试也可以逃掉的程度].何 ...
- Looksery Cup 2015 F - Yura and Developers 单调栈+启发式合并
F - Yura and Developers 第一次知道单调栈搞出来的区间也能启发式合并... 你把它想想成一个树的形式, 可以发现确实可以启发式合并. #include<bits/stdc+ ...
- 【BZOJ 4709】柠檬 斜率优化dp+单调栈
题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...
- CDOJ 1132 酱神赏花 dp+单调栈降低复杂度+滚动数组
酱神赏花 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 262143/262143KB (Java/Others) Submit St ...
- [CSP-S模拟测试]:施工(DP+单调栈+前缀和)
题目描述 小$Y$家门前有一条街道,街道上顺序排列着$n$幢建筑,其中左起第$i$幢建筑的高度为$h_i$.小$Y$定义街道的不美观度为所有相邻建筑高度差的绝对值之和乘上常数$c$,为了改善街道环境, ...
随机推荐
- js创建函数的方式
一般一下这三种方式 第一种(函数声明): function sum1(num1,num2){ return num1+num2;} 没啥好说的 第二种(函数表达式): var sum2 = fun ...
- NOIP 2016 D2T2 蚯蚓](思维)
NOIP 2016 D2T2 蚯蚓 题目大意 本题中,我们将用符号 \(\lfloor c \rfloor⌊c⌋\) 表示对 \(c\) 向下取整,例如:\(\lfloor 3.0 \rfloor = ...
- Mac搭建svn服务器环境
Mac搭建svn服务器环境 svn是Subversion的简称,是一个开放源代码的版本控制系统, Mac系统自带了svn的服务端和客户端功能, 因此不需要下载第三方软件,就可以支持svn进行版本的管控 ...
- Java入门基础学习,成为一个Java程序员的必备知识
引言 众所周知,Java是一种面向对象的编程语言.您可以在Windows操作系统上编写Java源代码,而在Linux操作系统上运行编译后的字节码,而无需修改源代码. 数据类型 Java 有 2 种数据 ...
- SpringBoot入门详细教程
一.SpringBoot入门 1.SpringBoot简介 SpringBoot是整个Spring技术栈的整合,来简化Spring应用开发,约定大于配置,去繁从简,just run 就能创建一 个独立 ...
- python中的常用数据类型
python中的常用数据类型 以下是个人总结的python中常见的数据类型,话不多说,我们直接步入正题: 数字类型 整型类:int类可以表示任意大小的整数值,在python中没有像JAVA或者C那样的 ...
- Scala 面向对象(四):import
1 Scala引入包基本介绍 Scala引入包也是使用import, 基本的原理和机制和Java一样,但是Scala中的import功能更加强大,也更灵活. 因为Scala语言源自于Java,所以ja ...
- 数据可视化之powerBI基础(七)一文带你熟悉PowerBI建模视图中的功能
https://zhuanlan.zhihu.com/p/67316729 PowerBI 3月的更新,正式发布了建模视图,而之前只是预览功能.新的建模视图到底有什么用,下面带你认识一下它的主要功能. ...
- Thymeleaf模板引擎学习
开发传统Java WEB项目时,我们可以使用JSP页面模板语言,但是在SpringBoot中已经不推荐使用JSP页面进行页面渲染了.从而Thymeleaf提供了一个用于整合Spring MVC的可选模 ...
- 数据规整:连接、联合与重塑知识图谱-《利用Python进行数据分析》
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章 ...