LA 3641 Leonardo的笔记本 & UVA 11077 排列统计
LA 3641 Leonardo的笔记本
题目
给出26个大写字母的置换B,问是否存在要给置换A,使得 \(A^2 = B\)
分析
将A分解为几个循环,可以观察经过乘积运算得到\(A^2\)后,循环有什么不同。将循环画成一个环,给他们标号\(0,1,\cdots,n-1\), 0号指向1号,n-1号指向1号。如果 n 是奇数,那么可以发现\(A^2\)中,0号指向了2号,2号指向了4号...n-1号指向了1号,1号指向3号...n-2号指向0号,他们依然是一个环。但是如果 n 是偶数,那么0号指向了2号,2号指向了4号,n-2号指向了0号,这一半元素单独构成一个环,另一半元素单独构成一个环。
回到题目中,我们找到B中所有的环,对于B中长度为奇数的环,我们可以选择在A中用同样长度的一个环来得到它,也可以选择用一个长度为2倍的环来得到它。而对于B中长度为偶数的环,我们只能选择在A中用长度为它二倍的环来得到它,所以在B中同一长度为偶数的环,他们的个数必须是偶数个。
char s[30];
int T, vis[N], cnt[30];
int main() {
scanf("%d", &T);
while(T--){
scanf("%s", s);
memset(cnt, 0, sizeof cnt);
memset(vis, 0, sizeof vis);
for (int i = 0; i < 26;i++){
if(!vis[i]){
int j = i, n = 0;
do{
vis[j] = 1;
j = s[j] - 'A';
n++;
} while (j != i);
cnt[n]++;
}
}
int flag = true;
for (int i = 2; i <= 26;i+= 2){
if(cnt[i] % 2 == 1)
flag = false;
}
puts(flag ? "Yes" : "No");
}
return 0;
}
UVA 11077 排列统计
题意:
给定一个长度为n的排列,可以通过一系列的交换变成{1,2,3,...n}。给定n和k,统计有多少个排列至少需要交换 k 次才能变成{1,2,...,n}。
分析
把这个长度为n的排列看成一个置换,我们每次交换操作肯定是在循环中选择两个数字进行交换。每次交换可以等效于将环的长度减1,也就是把某个元素从环中剔除。(可以举几个例子),所以c个元素的循环,总共需要c-1次交换操作。
设f[i][j]为长度为i的循环需要交换 j 次才能变成顺序排列的排列个数。
则\(f[i][j] = f[i-1][j-1] * (i-1) + f[i-1][j]\)
前面的表示将第 i 个元素随便插入到前面 i-1 个元素组成的若干个圆排列中(联系第一类斯特林数),后面的表示将第 i 个元素单独构成一个环,它并不对交换操作造成贡献
ull f[N][N];
int main() {
memset(f, 0, sizeof f);
f[1][0] = 1;
for (int i = 2; i <= 21;i++){
for (int j = 0; j < i;j++){
f[i][j] = f[i - 1][j];
if(j > 0)
f[i][j] += f[i - 1][j - 1] * (i - 1);
}
}
int n, k;
while(scanf("%d%d",&n,&k) == 2 && n)
printf("%llu\n", f[n][k]);
return 0;
}
LA 3641 Leonardo的笔记本 & UVA 11077 排列统计的更多相关文章
- UVA 11077 - Find the Permutations(递推)
UVA 11077 - Find the Permutations option=com_onlinejudge&Itemid=8&page=show_problem&cate ...
- Leonardo的笔记本LA 3641——置换的乘法
题意 给出26个大写字母的置换 $B$,问是否存在一个置换 $A$,使得 $A^2=B$. 分析 首先,若A=BC,若B和C都能表示成两个相同循环的乘积,则A也能. 因为,不相交的循环的乘积满足交换律 ...
- LA 3641 (置换 循环的分解) Leonardo's Notebook
给出一个26个大写字母的置换B,是否存在A2 = B 每个置换可以看做若干个循环的乘积.我们可以把这些循环看成中UVa 10294的项链, 循环中的数就相当于项链中的珠子. A2就相当于将项链旋转了两 ...
- 【LA 3641】 Leonardo's Notebook (置换群)
[题意] 给出26个大写字母组成 字符串B问是否存在一个置换A使得A^2 = B [分析] 置换前面已经说了,做了这题之后有了更深的了解. 再说说置换群. 首先是群. 置换群的元素是置换,运算时是 ...
- Uva 11077 Find the Permutations [置换群 DP]
题意: 给定$n$和$k$,问有多少排列交换$k$次能变成升序 $n \le 21$ $uva$貌似挂掉了$vjudge$上一直排队 从某个排列到$1,2,...,n$和从$1,2,...,n$到某个 ...
- LA 3644 - X-Plosives ( 也即UVA 1160)
LA看题 请点击:传送门 UVA 上也有这题 :UVA 1160 - X-Plosives 题目大意就是如果车上存在 k 个简单化合物,正好包含 k 种元素 ,那么它们将有危险,此时你应该拒绝装车. ...
- UVa 11077 (循环分解 递推) Find the Permutations
把{1, 2, 3,,, n}叫做自然排列 本题便是求有多少个n元排列P要至少经过k次交换才能变为自然排列. 首先将排列P看做置换,然后将其分解循环,对于每个长度为i的循环至少要交换i-1次才能归位. ...
- UVa 11077 Find the Permutations(置换+递推)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35431 [思路] 置换+递推 将一个排列看作一个置换,分解为k个循 ...
- UVa 11077 Find the Permutations (计数DP)
题意:给定 n 和 m,问你在 1 ~ n 的所有排列中,有多少个排列满足至少要交换 m 次才能变成 1 2 3 ... n. 析:首先,先考虑一下,某个排列,要变成 1 2 3 .. n,最少要交换 ...
随机推荐
- WPF TreeView Indent 减少节点的缩进
www.swack.cn - 原文链接:WPF TreeView Indent 减少节点的缩进 问题 最近一个需求,需要在界面中实现Windows资源管理器TreeView的界面.但是我发现,我做出的 ...
- .netcore利用perf分析高cpu使用率
目录 一 在宿主机运行perf 二 容器内安装perf 1,重新构建镜像 2,下载火焰图生成脚本 3,安装linux-perf 三 CPU占用分析 1,perf record捕获进程 2,生成火焰图 ...
- 【Java基础】Java10 新特性
Java10 新特性 局部变量类型推断 局部变量的显示类型声明,常常被认为是不必须的. 场景一:类实例化时.在声明一个变量时,总是习惯了敲打两次变量类型,第一次用于声明变量类型,第二次用于构造器. 场 ...
- 【Redis3.0.x】配置文件
Redis3.0.x 配置文件 概述 Redis 的配置文件位于Redis安装目录下,文件名为 redis.conf. 可以通过 CONFIG 命令查看或设置配置项. Redis 命令不区分大小写. ...
- Tengine 四层代理:
Tengine 四层代理: 1 ) 安装tengine ( nginx1.9 以上版本 编译以后要支持stream 模块) 1.1 ) tengine(nginx) 一定要是nginx-1.9.X 以 ...
- 聊聊 g0
很多时候,当我们跟着源码去理解某种事物时,基本上可以认为是以时间顺序展开,这是编年体的逻辑.还有另一种逻辑,纪传体,它以人物为中心编排史事,使得读者更聚焦于某个人物.以一种新的视角,把所有的事情串连起 ...
- 日常采坑:.NetCore上传大文件
一..NetCore上传大文件 .NetCore3.1 webapi 本地测试上传时,遇到一个坑,大点的文件直接失败,根本不走控制器方法. 二.大文件上传配置 IFormFile方式,vs IIS E ...
- 【Linux】rsync 守护进程的配置
环境 centos7.2 1.首先查看是否安装rsync的相关包 rpm -qa | grep rsync rsync-3.1.2-4.el7.x86_64 如果没安装就yum install rsy ...
- 【Linux】salt的cmd.script命令介绍
salt是一个很棒的自动化运维工具之一,常用的有cmd.run,今天介绍的是cmd.script 其实一眼就能看出这个命令是执行脚本的命令 具体操作如下: 1.将/etc/salt/master中的 ...
- 【Oracle】想查询相关的v$视图,但是提示表或视图不存在解决办法
原因是使用的用户没有相关的查询权限导致 解决办法: grant select any dictionary to 用户; --这个权限比较大 这个权限是最低的要求,但是可以访问到v$相关视图 ...