1. 权值的方差过大导致梯度爆炸的原因
  2. 方差一致性原则分析Xavier方法与Kaiming初始化方法

    饱和激活函数tanh,非饱和激活函数relu
  3. pytorch提供的十种初始化方法

梯度消失与爆炸

\[H_2 = H_1 * W_2\\
\Delta W_2 = \frac{\partial Loss}{\partial W_2}
=\frac{\partial Loss}{\partial out}
*\frac{\partial out}{\partial H_2}
*\frac{\partial H_2}{\partial W_2}
=\frac{\partial Loss}{\partial out}
*\frac{\partial out}{\partial H_2}*H_1
\]
\[{梯度消失:}H_1 \rightarrow 0 \Rightarrow \Delta W_2 \rightarrow 0\\
{梯度爆炸:}H_1 \rightarrow \infty \Rightarrow \Delta W_2 \rightarrow \infty
\]
\[1. E(X*Y)=E(X)*E(Y)\\
2. D(X)=E(X^2)-[E(X)]^2\\
3. D(X+Y)=D(X)+D(Y)\\
1.2.3. \Rightarrow D(X*Y)=D(X)D(Y)+D(X)*[E(Y)]^2+D(Y)*[E(X)]^2\\
若E(X)=0,E(Y)=0 \Rightarrow D(X*Y)=D(X)*D(Y)
\]
\[H_{11} = \sum ^{n}_{i=0} X_i * W_{1i}\\
D(X*Y) = D(X)*D(Y)\\
D(H_{11})=\sum ^{n}_{i=0} D(X_i)*D(W_1i)=n*(1*1)=n\\
std(H_{11})=\sqrt D(H_11) = \sqrt n\\
D(H_1) = n*D(X)*D(W)=1\\
D(W)=\frac{1}{n}\Rightarrow std(W)=\sqrt \frac {1}{n}
\]

Xavier方法与Kaiming方法

Xavier初始化

方差一致性,保持数据尺度维持在恰当范围,通常方差为1

激活函数:饱和函数,如Sigmoid,Tanh

\[n_i * D(W)=1\\
n_{i+1} *D(W)=1\\
\Rightarrow D(W)=\frac{2}{n_i+n_i+1}
\]
\[W \sim U[-a,a]\\
D(W) = \frac {(-a-a)^2}{12} = \frac {(2a)^2}{12}=\frac {a^2}{3}\\
\frac{2}{n_i+n_{i+1}}=\frac{a^2}{3}\Rightarrow a = \frac{\sqrt 6}{\sqrt {n_i+n_{i+1}}}\\
\Rightarrow W \sim U[-\frac{\sqrt 6}{\sqrt {n_i+n_{i+1}}},\frac{\sqrt 6}{\sqrt {n_i+n_{i+1}}}]
\]

Kaiming初始化

方差一致性:保持数据尺度维持在恰当范围,通常方差为1

激活函数:ReLU及其变种

\[D(W) = \frac{2}{n_i}\\
D(W) = \frac{2}{(1+a^2)*n_i}\\
std(W) = \sqrt{\frac{2}{(1+a^2)*n_i}}
\]

参考文献:

《Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification》

常用初始化方法

  1. Xavier均匀分布
  2. Xavier正态分布
  3. Kaiming均匀分布
  4. Kaiming正态分布
  5. 均匀分布
  6. 正态分布
  7. 常数分布
  8. 正交矩阵初始化
  9. 单位矩阵初始化
  10. 稀疏矩阵初始化
nn.init.calculate_gain(nonlinearity, param=None)

功能:计算激活函数的方差变化尺度

输入数据的方差和输出数据方差的比例。

参数:

  • nonlinearity:激活函数名称
  • param:激活函数参数,Leaky ReLU的negative_slop
# -*- coding: utf-8 -*-
"""
# @file name : grad_vanish_explod.py
# @author : TingsongYu https://github.com/TingsongYu
# @date : 2019-09-30 10:08:00
# @brief : 梯度消失与爆炸实验
"""
import os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
import torch
import random
import numpy as np
import torch.nn as nn
path_tools = os.path.abspath(os.path.join(BASE_DIR, "..", "..", "tools", "common_tools.py"))
assert os.path.exists(path_tools), "{}不存在,请将common_tools.py文件放到 {}".format(path_tools, os.path.dirname(path_tools)) import sys
hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..")
sys.path.append(hello_pytorch_DIR) from tools.common_tools import set_seed set_seed(1) # 设置随机种子 class MLP(nn.Module):
def __init__(self, neural_num, layers):
super(MLP, self).__init__()
self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)])
self.neural_num = neural_num def forward(self, x):
for (i, linear) in enumerate(self.linears):
x = linear(x)
x = torch.relu(x) print("layer:{}, std:{}".format(i, x.std()))
if torch.isnan(x.std()):
print("output is nan in {} layers".format(i))
break return x def initialize(self):
for m in self.modules():
if isinstance(m, nn.Linear):
# nn.init.normal_(m.weight.data, std=np.sqrt(1/self.neural_num)) # normal: mean=0, std=1 # a = np.sqrt(6 / (self.neural_num + self.neural_num))
#
# tanh_gain = nn.init.calculate_gain('tanh')
# a *= tanh_gain
#
# nn.init.uniform_(m.weight.data, -a, a) # nn.init.xavier_uniform_(m.weight.data, gain=tanh_gain) # nn.init.normal_(m.weight.data, std=np.sqrt(2 / self.neural_num))
nn.init.kaiming_normal_(m.weight.data) flag = 0
# flag = 1 if flag:
layer_nums = 100
neural_nums = 256
batch_size = 16 net = MLP(neural_nums, layer_nums)
net.initialize() inputs = torch.randn((batch_size, neural_nums)) # normal: mean=0, std=1 output = net(inputs)
print(output) # ======================================= calculate gain ======================================= # flag = 0
flag = 1 if flag: x = torch.randn(10000)
out = torch.tanh(x) gain = x.std() / out.std()
print('gain:{}'.format(gain)) tanh_gain = nn.init.calculate_gain('tanh')
print('tanh_gain in PyTorch:', tanh_gain)

pytorch(14)权值初始化的更多相关文章

  1. [PyTorch 学习笔记] 4.1 权值初始化

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/grad_vanish_explod.py 在搭建好网络 ...

  2. caffe中权值初始化方法

    首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代 ...

  3. 神经网络权值初始化方法-Xavier

    https://blog.csdn.net/u011534057/article/details/51673458 https://blog.csdn.net/qq_34784753/article/ ...

  4. 权值初始化 - Xavier和MSRA方法

    设计好神经网络结构以及loss function 后,训练神经网络的步骤如下: 初始化权值参数 选择一个合适的梯度下降算法(例如:Adam,RMSprop等) 重复下面的迭代过程: 输入的正向传播 计 ...

  5. PyTorch 学习笔记(四):权值初始化的十种方法

    pytorch在torch.nn.init中提供了常用的初始化方法函数,这里简单介绍,方便查询使用. 介绍分两部分: 1. Xavier,kaiming系列: 2. 其他方法分布 Xavier初始化方 ...

  6. 【5】激活函数的选择与权值w的初始化

    激活函数的选择: 西格玛只在二元分类的输出层还可以用,但在二元分类中,其效果不如tanh,效果不好的原因是当Z大时,斜率变化很小,会导致学习效率很差,从而很影响运算的速度.绝大多数情况下用的激活函数是 ...

  7. 2019.01.14 bzoj5343: [Ctsc2018]混合果汁(整体二分+权值线段树)

    传送门 整体二分好题. 题意简述:nnn种果汁,每种有三个属性:美味度,单位体积价格,购买体积上限. 现在有mmm个询问,每次问能否混合出总体积大于某个值,总价格小于某个值的果汁,如果能,求所有方案中 ...

  8. 【机器学习的Tricks】随机权值平均优化器swa与pseudo-label伪标签

    文章来自公众号[机器学习炼丹术] 1 stochastic weight averaging(swa) 随机权值平均 这是一种全新的优化器,目前常见的有SGB,ADAM, [概述]:这是一种通过梯度下 ...

  9. 51nod1459(带权值的dijkstra)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1459 题意:中文题诶- 思路:带权值的最短路,这道题数据也没 ...

随机推荐

  1. 【noi 2.6_687】Color Tunnels(DP)

    P.S.o(︶︿︶)o 唉~虽然这题方程不难,但题目长,代码长,我花了超过3小时!(>﹏<)悲伤辣么大~~~ 谨此题解惠及众人,hh. 题意:给定长度为M的一串颜色序列,和平面上的N个颜色 ...

  2. hdu 1166 敌兵布阵 线段树区间修改、查询、单点修改 板子题

    题目链接:敌兵布阵 题目: C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视 ...

  3. hdu 6795 Little W and Contest 并查集+排列组合

    题意: t组输入,有n个人,刚开始谁也不认识谁.每一个人有一个权值w[i](1<=w[i]<=2),你要挑选3个互相不认识的人组成一个队,且要保证3个人权值之和大于等于5(也就意味着最少要 ...

  4. fzu2204 7

    Problem Description n个有标号的球围成一个圈.每个球有两种颜色可以选择黑或白染色.问有多少种方案使得没有出现连续白球7个或连续黑球7个.  Input 第一行有多组数据.第一行T表 ...

  5. ACM ICPC 2017 Warmup Contest 1 D

    Daydreaming Stockbroker Gina Reed, the famous stockbroker, is having a slow day at work, and between ...

  6. mysql(一)--mysql架构和执行流程

    1. 一条查询 SQL 语句是如何执行的? 我们的程序或者工具要操作数据库,第一步要做什么事情? 跟数据库建立连接.   1.1. 通信协议 首先,MySQL 必须要运行一个服务,监听默认的 3306 ...

  7. Awesome GitHub Topics

    Awesome GitHub Topics freeCodeCamp https://github.com/topics/javascript?o=desc&s=stars https://g ...

  8. js repeatify & no for loop

    js repeatify & no for loop js repeatify https://www.sitepoint.com/5-typical-javascript-interview ...

  9. H5 下拉刷新、加载更多

    H5 下拉刷新.加载更多 demos const autoLoadMore = (url = ``) => { // todo ... } refs xgqfrms 2012-2020 www. ...

  10. true && number !== boolean

    true && number !== boolean bug let result = ``; // section, name ? create text, compute cent ...