1. 权值的方差过大导致梯度爆炸的原因
  2. 方差一致性原则分析Xavier方法与Kaiming初始化方法

    饱和激活函数tanh,非饱和激活函数relu
  3. pytorch提供的十种初始化方法

梯度消失与爆炸

\[H_2 = H_1 * W_2\\
\Delta W_2 = \frac{\partial Loss}{\partial W_2}
=\frac{\partial Loss}{\partial out}
*\frac{\partial out}{\partial H_2}
*\frac{\partial H_2}{\partial W_2}
=\frac{\partial Loss}{\partial out}
*\frac{\partial out}{\partial H_2}*H_1
\]
\[{梯度消失:}H_1 \rightarrow 0 \Rightarrow \Delta W_2 \rightarrow 0\\
{梯度爆炸:}H_1 \rightarrow \infty \Rightarrow \Delta W_2 \rightarrow \infty
\]
\[1. E(X*Y)=E(X)*E(Y)\\
2. D(X)=E(X^2)-[E(X)]^2\\
3. D(X+Y)=D(X)+D(Y)\\
1.2.3. \Rightarrow D(X*Y)=D(X)D(Y)+D(X)*[E(Y)]^2+D(Y)*[E(X)]^2\\
若E(X)=0,E(Y)=0 \Rightarrow D(X*Y)=D(X)*D(Y)
\]
\[H_{11} = \sum ^{n}_{i=0} X_i * W_{1i}\\
D(X*Y) = D(X)*D(Y)\\
D(H_{11})=\sum ^{n}_{i=0} D(X_i)*D(W_1i)=n*(1*1)=n\\
std(H_{11})=\sqrt D(H_11) = \sqrt n\\
D(H_1) = n*D(X)*D(W)=1\\
D(W)=\frac{1}{n}\Rightarrow std(W)=\sqrt \frac {1}{n}
\]

Xavier方法与Kaiming方法

Xavier初始化

方差一致性,保持数据尺度维持在恰当范围,通常方差为1

激活函数:饱和函数,如Sigmoid,Tanh

\[n_i * D(W)=1\\
n_{i+1} *D(W)=1\\
\Rightarrow D(W)=\frac{2}{n_i+n_i+1}
\]
\[W \sim U[-a,a]\\
D(W) = \frac {(-a-a)^2}{12} = \frac {(2a)^2}{12}=\frac {a^2}{3}\\
\frac{2}{n_i+n_{i+1}}=\frac{a^2}{3}\Rightarrow a = \frac{\sqrt 6}{\sqrt {n_i+n_{i+1}}}\\
\Rightarrow W \sim U[-\frac{\sqrt 6}{\sqrt {n_i+n_{i+1}}},\frac{\sqrt 6}{\sqrt {n_i+n_{i+1}}}]
\]

Kaiming初始化

方差一致性:保持数据尺度维持在恰当范围,通常方差为1

激活函数:ReLU及其变种

\[D(W) = \frac{2}{n_i}\\
D(W) = \frac{2}{(1+a^2)*n_i}\\
std(W) = \sqrt{\frac{2}{(1+a^2)*n_i}}
\]

参考文献:

《Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification》

常用初始化方法

  1. Xavier均匀分布
  2. Xavier正态分布
  3. Kaiming均匀分布
  4. Kaiming正态分布
  5. 均匀分布
  6. 正态分布
  7. 常数分布
  8. 正交矩阵初始化
  9. 单位矩阵初始化
  10. 稀疏矩阵初始化
nn.init.calculate_gain(nonlinearity, param=None)

功能:计算激活函数的方差变化尺度

输入数据的方差和输出数据方差的比例。

参数:

  • nonlinearity:激活函数名称
  • param:激活函数参数,Leaky ReLU的negative_slop
# -*- coding: utf-8 -*-
"""
# @file name : grad_vanish_explod.py
# @author : TingsongYu https://github.com/TingsongYu
# @date : 2019-09-30 10:08:00
# @brief : 梯度消失与爆炸实验
"""
import os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
import torch
import random
import numpy as np
import torch.nn as nn
path_tools = os.path.abspath(os.path.join(BASE_DIR, "..", "..", "tools", "common_tools.py"))
assert os.path.exists(path_tools), "{}不存在,请将common_tools.py文件放到 {}".format(path_tools, os.path.dirname(path_tools)) import sys
hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..")
sys.path.append(hello_pytorch_DIR) from tools.common_tools import set_seed set_seed(1) # 设置随机种子 class MLP(nn.Module):
def __init__(self, neural_num, layers):
super(MLP, self).__init__()
self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)])
self.neural_num = neural_num def forward(self, x):
for (i, linear) in enumerate(self.linears):
x = linear(x)
x = torch.relu(x) print("layer:{}, std:{}".format(i, x.std()))
if torch.isnan(x.std()):
print("output is nan in {} layers".format(i))
break return x def initialize(self):
for m in self.modules():
if isinstance(m, nn.Linear):
# nn.init.normal_(m.weight.data, std=np.sqrt(1/self.neural_num)) # normal: mean=0, std=1 # a = np.sqrt(6 / (self.neural_num + self.neural_num))
#
# tanh_gain = nn.init.calculate_gain('tanh')
# a *= tanh_gain
#
# nn.init.uniform_(m.weight.data, -a, a) # nn.init.xavier_uniform_(m.weight.data, gain=tanh_gain) # nn.init.normal_(m.weight.data, std=np.sqrt(2 / self.neural_num))
nn.init.kaiming_normal_(m.weight.data) flag = 0
# flag = 1 if flag:
layer_nums = 100
neural_nums = 256
batch_size = 16 net = MLP(neural_nums, layer_nums)
net.initialize() inputs = torch.randn((batch_size, neural_nums)) # normal: mean=0, std=1 output = net(inputs)
print(output) # ======================================= calculate gain ======================================= # flag = 0
flag = 1 if flag: x = torch.randn(10000)
out = torch.tanh(x) gain = x.std() / out.std()
print('gain:{}'.format(gain)) tanh_gain = nn.init.calculate_gain('tanh')
print('tanh_gain in PyTorch:', tanh_gain)

pytorch(14)权值初始化的更多相关文章

  1. [PyTorch 学习笔记] 4.1 权值初始化

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/grad_vanish_explod.py 在搭建好网络 ...

  2. caffe中权值初始化方法

    首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代 ...

  3. 神经网络权值初始化方法-Xavier

    https://blog.csdn.net/u011534057/article/details/51673458 https://blog.csdn.net/qq_34784753/article/ ...

  4. 权值初始化 - Xavier和MSRA方法

    设计好神经网络结构以及loss function 后,训练神经网络的步骤如下: 初始化权值参数 选择一个合适的梯度下降算法(例如:Adam,RMSprop等) 重复下面的迭代过程: 输入的正向传播 计 ...

  5. PyTorch 学习笔记(四):权值初始化的十种方法

    pytorch在torch.nn.init中提供了常用的初始化方法函数,这里简单介绍,方便查询使用. 介绍分两部分: 1. Xavier,kaiming系列: 2. 其他方法分布 Xavier初始化方 ...

  6. 【5】激活函数的选择与权值w的初始化

    激活函数的选择: 西格玛只在二元分类的输出层还可以用,但在二元分类中,其效果不如tanh,效果不好的原因是当Z大时,斜率变化很小,会导致学习效率很差,从而很影响运算的速度.绝大多数情况下用的激活函数是 ...

  7. 2019.01.14 bzoj5343: [Ctsc2018]混合果汁(整体二分+权值线段树)

    传送门 整体二分好题. 题意简述:nnn种果汁,每种有三个属性:美味度,单位体积价格,购买体积上限. 现在有mmm个询问,每次问能否混合出总体积大于某个值,总价格小于某个值的果汁,如果能,求所有方案中 ...

  8. 【机器学习的Tricks】随机权值平均优化器swa与pseudo-label伪标签

    文章来自公众号[机器学习炼丹术] 1 stochastic weight averaging(swa) 随机权值平均 这是一种全新的优化器,目前常见的有SGB,ADAM, [概述]:这是一种通过梯度下 ...

  9. 51nod1459(带权值的dijkstra)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1459 题意:中文题诶- 思路:带权值的最短路,这道题数据也没 ...

随机推荐

  1. Bone Collector II HDU - 2639 01背包第k最大值

    题意: 01背包,找出第k最优解 题解: 对于01背包最优解我们肯定都很熟悉 第k最优解的话也就是在dp方程上加一个维度来存它的第k最优解(dp[i][j]代表,体积为i能获得的第j最大价值) 对于每 ...

  2. Medium Free

    fetch(window.location.href,{credentials:"omit",redirect:"follow",mode:"no-c ...

  3. Java RMI 实现一个简单的GFS(谷歌文件系统)——背景与设计篇

    目录 背景 系统设计 1. 系统功能 2. Master组件 2.1 命名空间 2.2 心跳机制 2.3 故障恢复和容错机制 3. ChunkServer组件 3.1 本地存储 3.2 内存命中机制 ...

  4. leetcode8 字符串转换整数

    <cctype> isdigit(char) 问题:在做乘法,加法前,先判断是否溢出 &&优先级大于== 然后教训: 考虑情况不周.比如3.14这样 然后解决办法 多自己搞 ...

  5. 831A- Unimodal Array

    A. Unimodal Array time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  6. Java 对象的哈希值是每次 hashCode() 方法调用重计算么?

    对于没有覆盖hashCode()方法的对象 如果没有覆盖 hashCode() 方法,那么哈希值为底层 JDK C++ 源码实现,实例每次调用hashcode()方法,只有第一次计算哈希值,之后哈希值 ...

  7. LVS之DR模式部署

    一.LVS-DR数据包流向分析 为方便进行原理分析,将Client与群集机器放在同一网络中,数据包流经的路线为1-2-3-41.Client 向目标 VIP 发出请求,Director(负载均衡器)接 ...

  8. Error: Cannot find module 'koa-router'

    Error: Cannot find module 'koa-router' koa-router !== koa-route # install OK $ yarn add koa-router h ...

  9. 微信小程序-生命周期图解

    微信小程序-生命周期图解 小程序生命周期 App 生命周期 https://developers.weixin.qq.com/miniprogram/dev/reference/api/App.htm ...

  10. js swap array

    js swap array ES6 swap array 就地交换 no need let , const [ b, a, ] = [ a, b, ]; // ES6 swap const arr = ...